Skip to main content
Log in

Temperature influences β-carotene production in recombinant Saccharomyces cerevisiae expressing carotenogenic genes from Phaffia rhodozyma

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Red yeast Phaffia rhodozyma is a prominent microorganism able to synthesize carotenoid. Here, three carotenogenic cDNAs of P. rhodozyma CGMCC 2.1557, crtE, crtYB and crtI, were cloned and introduced into Saccharomyces cerevisiae INVSc1. The recombinant Sc-EYBI cells could synthesize 258.8 ± 43.8 μg g−1 dry cell weight (DCW) of β-carotene when growing at 20 °C, about 59-fold higher than in those growing at 30 °C. Additional expression of the catalytic domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase from S. cerevisiae (Sc-EYBIH) increased the β-carotene level to 528.8 ± 13.3 μg g−1 DCW as cells growing at 20 °C, 27-fold higher than cells growing at 30 °C, although cells grew faster at 30 °C than at 20 °C. Consistent with the much higher β-carotene level in cells growing at 20 °C, transcription level of three crt genes and cHMG1 gene in cells growing at 20 °C was a little higher than in those growing at 30 °C. Meanwhile, expression of three carotenogenic genes and accumulation of β-carotene promoted cell growth. These results reveal the influence of temperature on β-carotene biosynthesis and may be helpful for improving β-carotene production in recombinant S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alcaino J, Barahona S, Carmona M, Lozano C, Marcoleta A, Niklitschek M, Sepúlveda D, Baeza M, Cifuentes V (2008) Cloning of the cytochrome p450 reductase (crtR) gene and its involvement in the astaxanthin biosynthesis of Xanthophyllomyces dendrorhous. BMC Microbiol 8:169

    Article  Google Scholar 

  • Bhosale P, Bernstein PS (2004) Beta-carotene production by Flavobacterium multivorum in the presence of inorganic salts and urea. J Ind Microbiol Biotechnol 31:565–571

    Article  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  Google Scholar 

  • Choudhari S, Singhal R (2008) Media optimization for the production of β-carotene by Blakeslea trispora: a statistical approach. Bioresour Technol 99:722–730

    Article  CAS  Google Scholar 

  • Domínguez-Bocanegra AR, Ponce-Noyola T, Torres-Muñoz JA (2007) Astaxanthin production by Phaffia rhodozyma and Haematococcus pluvialis: a comparative study. Appl Microbiol Biotechnol 75:783–791

    Article  Google Scholar 

  • Donald KA, Hampton RY, Fritz IB (1997) Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 63:3341–3344

    CAS  Google Scholar 

  • García-González M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG (2005) Production of Dunalliela salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 115:81–90

    Article  Google Scholar 

  • Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    Article  CAS  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lodato P, Alcailno J, Barahona S, Niklitschek M, Carmona M, Wozniak A, Baeza M, Jimenez A, Cifuentes V (2007) Expression of the carotenoid biosynthesis genes in Xanthophyllomyces dendrorhous. Biol Res 40:73–84

    Article  CAS  Google Scholar 

  • Martinez-Moya P, Watt SA, Niehaus K, Alcaíno J, Baeza M, Cifuentes V (2011) Proteomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous. BMC Microbiol 11:131

    Article  CAS  Google Scholar 

  • Nelis HJ, De Leenheer AP (1991) Microbial sources of carotenoid pigments used in foods and feeds. J Appl Bacteriol 70:181–191

    Article  CAS  Google Scholar 

  • Nishizaki T, Tsuge K, Itaya M, Doi N, Yanagawa H (2007) Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Appl Environ Microbiol 73:1355–1361

    Article  CAS  Google Scholar 

  • Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S (2009) Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols. Appl Microbiol Biotechnol 82:837–845

    Article  CAS  Google Scholar 

  • Ribeiro BD, Barreto DW, Coelho MAZ (2011) Technological aspects of β-carotene production. Food Bioprocess Technol 4:693–701

    Article  CAS  Google Scholar 

  • Shapiro RS, Cowen LE (2012) Thermal control of microbial development and virulence: molecular mechanisms of microbial temperature sensing. mBio 3(5). doi:10.1128/mBio.00238-12

  • Shi F, Li YX (2011) Synthesis of γ-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032. Biotechnol Lett 33:2469–2474

    Article  CAS  Google Scholar 

  • Shi F, Kawai S, Mori S, Kono E, Murata K (2005) Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae. FEBS J 272:3337–3349

    Article  CAS  Google Scholar 

  • Ukibe K, Hashida K, Yoshida N, Takagi H (2009) Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance. Appl Environ Microbiol 75:7205–7211

    Article  CAS  Google Scholar 

  • Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJJ (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:4342–4350

    Article  CAS  Google Scholar 

  • Wach A, Brachat A, Alberti-Segui C, Rebischung C, Philippsen P (1997) Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13:1065–1075

    Article  CAS  Google Scholar 

  • Wang SL, Chen DJ, Deng BW, Wu XZ (2008) Effects of high hydrostatic pressure on the growth and β-carotene production of Rhodotorula glutinis. Yeast 25:251–257

    Article  CAS  Google Scholar 

  • Yan GL, Wen KR, Duan CQ (2012) Enhancement of β-carotene production by over-expression of HMG-CoA reductase coupled with addition of ergosterol biosynthesis inhibitors in recombinant Saccharomyces cerevisiae. Curr Microbiol 64:159–163

    Article  CAS  Google Scholar 

  • Yoon SH, Park HM, Kim JE, Lee SH, Choi MS, Kim JY, Oh DK, Keasling JD, Kim SW (2007) Increased beta-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Biotechnol Prog 23:599–605

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (No. 30870056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, F., Zhan, W., Li, Y. et al. Temperature influences β-carotene production in recombinant Saccharomyces cerevisiae expressing carotenogenic genes from Phaffia rhodozyma . World J Microbiol Biotechnol 30, 125–133 (2014). https://doi.org/10.1007/s11274-013-1428-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1428-8

Keywords

Navigation