Skip to main content
Log in

Astaxanthin production by Phaffia rhodozyma and Haematococcus pluvialis: a comparative study

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Phaffia rhodozyma (now Xanthophyllomyces dendrorhous) and Haematococcus pluvialis are known as the major prominent microorganisms able to synthesize astaxanthin natural pigment. Important research efforts have been made to determine optimal conditions for astaxanthin synthesis. When the focus is on astaxanthin production, the maximal reported value of 9.2 mg/g cell is obtained within H. pluvialis grown on BAR medium, under continuous illumination (345 μmol photon m−2 s−1) and without aeration. Whereas fermentation by mutated R1 yeast grown on coconut milk produced 1,850 μg/g yeast. However, when looking at astaxanthin productivity, the picture is slightly different. The figures obtained with P. rhodozyma are rather similar to those of H. pluvialis. Maximal reported values are 170 μg/g yeast per day with a wild yeast strain and 370 μg/g yeast per day with mutated R1 yeast. In the case of H. pluvialis, maximal values ranged from 290 to 428 μg/g cell per day depending on the media (BG-11 or BAR), light intensity (177 μmol photon m−2 s−1), aeration, etc. The main aim of this work was to examine how astaxanthin synthesis, by P. rhodozyma and H. pluvialis, could be compared. The study is based on previous works by the authors where pigment productions have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acheampong E, Martin A (1995) Kinetic studies on the yeast Phaffia rhodozyma. J Basic Microbiol 35:147–155

    Article  CAS  PubMed  Google Scholar 

  • Andrews AG, Phaff HJ, Starr MP (1976) Carotenoids of Phaffia rhodozyma red pigmented fermenting yeast. Phytochemistry 15:10003–10007

    Google Scholar 

  • An GH, Schuman DB, Johnson EA (1989) Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl Environ Microbiol 55:116–124

    Google Scholar 

  • APHA, WCPF (1992) Standard methods for the examination of waters and wastewaters, 17th edn. Washington, DC

  • Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 7:1077–1082

    Article  Google Scholar 

  • Boussiba S, Fan L, Vonshak A (1992) Enhancement and determination of astaxanthin accumulation in the green alga Haematococcus pluvialis. Methods Enzymol 213:386–391

    Article  CAS  Google Scholar 

  • Boussiba S, Bing-Bing W, Yuan JP, Zarka A, Chen F (1999) Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnol Lett 21:601–604

    Article  CAS  Google Scholar 

  • Britton G (1985) General carotenoids. Methods Enzymol 111:115–149

    Google Scholar 

  • Cordero B, Otero A, Patiño M, Arredondo BO, Fábregas J (1996) Astaxanthin production from the green alga Haematococcus pluvialis with different stress conditions. Biotechnol Lett 18:213–218

    Article  CAS  Google Scholar 

  • Del Río E, Acién FG, García-Malea MC, Rivas J, Molina E, Guerrero MG (2005) Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnol Bioeng 91(7):808–815

    Article  CAS  PubMed  Google Scholar 

  • Domínguez-Bocanegra AR, Torres-Muñoz JA (2004) Astaxanthin hyperproduction by Phaffia rhodozyma (now Xanthophyllomyces dendrorhous) with raw coconut milk as sole source of energy. Appl Microbiol Biotechnol 66:249–252

    Article  CAS  Google Scholar 

  • Domínguez-Bocanegra AR, Guerrero-Legarreta I, Martínez-Jerónimo F, Tomassini-Campocosio A (2004) Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresour Technol 92:209–214

    Article  CAS  PubMed  Google Scholar 

  • Droop MR (1954) Conditions governing haematochrome formation and loss in the alga Haematococcus pluvialis. Arch Microbiol 20:391–397

    CAS  Google Scholar 

  • Droop MR (1955) Carotenogenesis in Haematococcus. Nature 175:42

    Article  CAS  Google Scholar 

  • Fábregas J, Otero A, Maseda A, Domínguez A (2001) Two-stage cultures for the production astaxanthin from Haematococcus pluvialis. J Biotechnol 89:65–71

    Article  PubMed  Google Scholar 

  • Fang TJ, Chiou TY (1996) Batch cultivation and astaxanthin production by to mutant of the net yeast Phaffia rhodozyma NCHU-FS501. J Ind Microbiol 16:175–181

    Article  CAS  Google Scholar 

  • Fang TJ, Wang JM (2002) Extractability of astaxanthin in a mixed culture of a carotenoid over-producing mutant of Xanthophyllomyces dendrorhous and Bacillus circulans in two-stage batch fermentation. Process Biochem 37:1235–1245

    Article  CAS  Google Scholar 

  • Fleno B, Christensen Y, Larser R (1988) Astaxanthin producing yeast cells, methods for their preparation and their use. WO 88/08025

  • Fontana JD, Guimaraes MF, Martins NT, Fontana CA, Baron M (1996) Culture of the astaxanthin ogenic yeast Phaffia rhodozyma in low-cost media. Appl Biochem Biotechnol 57–58:413–422

    Article  PubMed  Google Scholar 

  • García-Malea MC, Brindley C, Del Río-Sánchez E, Acién FG, Fernández JM, Molina E (2005) Modeling of growth and accumulation of carotenoids in Haematococcus pluvialis as a function of irradiance and nutrients supply. Biochem Eng J 25:187–194

    Article  CAS  Google Scholar 

  • García-Malea MC, Del Río-Sánchez E, Casas-López JL, Acién-Fernández FG, Fernández-Sevilla JM, Guerrero MG, Molina-Grima E (2006) Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. J Biotechnol 123:329–342

    Article  CAS  Google Scholar 

  • Gu WL, An GH, Johnson EA (1997) Ethanol increases carotenoid production in Phaffia rhodozyma. J Ind Microbiol Biotechnol 19:114–117

    Article  CAS  PubMed  Google Scholar 

  • Haard N (1988) Astaxanthin formation by the yeast Phaffia rhodozyma on molasses. Biotechnol Lett 10:609–614

    Article  CAS  Google Scholar 

  • Hayman TG, Mannarelli BN, Leathers TD (1995) Production of carotenoids by Phaffia rhodozyma grown on media composed of corn wet-milling co-products. J Ind Microbiol 115:173–183

    Google Scholar 

  • Jian-Ping Y, Xian-Di G, Feng C (1997) Separation and analysis of carotenoids and chlorophylls in Haematococcus lacustris by high-performance liquid chromatography photodiode array detection. J Agric Food Chem 45:1952–1956

    Article  Google Scholar 

  • Jiménez R (1999) Obtención de una mutante de Phaffia rhodozyma hiperproductora de astaxanthin. Master in Sc thesis, Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, México (in Spanish)

  • Johnson EA, An GH (1991) Astaxanthin from microbial sources. Crit Rev Biotechnol 11:297–326

    Article  CAS  Google Scholar 

  • Johnson EA, Schroeder WA (1995) Microbial carotenoids. In: Fiechter A (ed) Advances biochemical engineering and biotechnology. Springer, Berlin 53:119–178

  • Kakizono T, Kobayashi M, Nagai S (1992) Effect of carbon/nitrogen ratio on the encystment accompanied with astaxanthin formation in to green alga, Haematococcus pluvialis. J Ferment Bioeng 74:403–405

    Article  CAS  Google Scholar 

  • Kang CD, Lee JS, Park TH, Sim SJ (2007) Complementary limiting factors of astaxanthin synthesis during photoautotrophic induction of Haematococcus pluvialis: C/N ratio and light intensity. Appl Microbiol Biotechnol (in press) DOI https://doi.org/10.1007/s00253-006-0759-x

  • Kobayashi M, Sakamoto Y (1999) Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol Lett 21:265–269

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Yamaguchi K, Nishio N, Nagai S (1992a) Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J Ferment Bioeng 74:17–20

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nagai S (1992b) Effects of light intensity, light quality and illumination cycle on astaxanthin formation in a green alga. J Ferment Bioeng 74:61–63

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate induced cyst cells of to green alga Haematococcus pluvialis. Appl Environ Microbiol 59:867–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Kakizono T, Nishio N, Nagai S, Kurimura Y, Tsuji Y (1997) Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol 48:351–356

    Article  CAS  Google Scholar 

  • Leathers DT (2003) Bioconversions of maize residues to value-added coproducts using yeast-like fungi. FEMS Yeast Research 3:133–140

    Article  CAS  PubMed  Google Scholar 

  • Lee YK, Soh CW (1991) Accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta). J Phycol 27:575–577

    Article  CAS  Google Scholar 

  • Lotan T, Hirschberg J (1995) Cloning and expression in Escherichia coli of the gene encoding β-C-4-oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett 364:125–128

    Article  CAS  PubMed  Google Scholar 

  • Martin AM, Acheampong E, Patel TR (1993) Production of astaxanthin by Phaffia rhodozyma using peat hydrolysates as substrate. J Chem Technol Biotechnol 58:223–230

    Article  CAS  Google Scholar 

  • Meyer PS, du Preez JC (1994a) Astaxanthin production by Phaffia rhodozyma mutant on grape juice. World J Microbiol Biotechnol 10:178–183

    Article  CAS  PubMed  Google Scholar 

  • Meyer PS, du Preez JC (1994b) Effect of culture conditions on astaxanthin production by mutant of Phaffia rhodozyma in batch and chemostat culture. Appl Microbiol Biotechnol 40:361–356

    Article  Google Scholar 

  • Meyer PS, du Preez JC, Kilian SG (1993) Selection and evaluation of astaxanthin-overproducing mutants of Phaffia rhodozyma. World J Microbiol Biotechnol 9:514–520

    Article  CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Neils HJ, Leenheer AP (1991) Microbial sources of carotenoid pigments uses in foods and feeds. J Appl Bacteriol 70:181–191

    Article  Google Scholar 

  • Newsome RL (1986) Food colors. Food Technol 49–56

  • Okagbue RN, Lewis MW (1984) Autolysis of the red yeast Phaffia rhodozyma: a potential tool to facilitate extraction of astaxanthin. Biotechnol Lett 6:247

    Article  CAS  Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506

    Article  CAS  Google Scholar 

  • Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466

    Article  CAS  PubMed  Google Scholar 

  • Orosa M, Franqueira D, Cid A, Abalde J (2005) Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. Bioresour Technol 95(3):373–378

    Article  CAS  Google Scholar 

  • Pringsheim EG (1966) Nutritional requirements of Haematococus pluvialis and related species. J Phycol 2:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ramírez J, Gutierrez H, Gschaedler A (2001) Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. J Biotechnol 88:259–268

    Article  PubMed  Google Scholar 

  • Sedmak JJ, Weerasinghe DK, Jolly SO (1990) Extraction and quantization of astaxanthin by Phaffia rhodozyma. Biotechnol Tech 4:107–112

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry. The principles and practice of statistics in biological research, 2nd edn. Freeman, San Francisco, USA

    Google Scholar 

  • Yamane Y, Higashida K, Nishio N (1997) Influence of oxygen and glucose on primary metabolism and astaxanthin production by Phaffia rhodozyma in fed-batch cultures: kinetic and stoichiometric analysis. Appl Environ Microbiol 63:4471–4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokayama T, Miki W (1995) Composition and presumed biosynthetic pathway of carotenoids in the astaxanthin-producing bacterium Agrobacterium aurantiacum. FEMS Microbiol Lett 28:139–144

    Article  Google Scholar 

  • You-Chul J, Chul-Woong Ch, Yeoung-Sang Y (2006) Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme Microb Technol 39:490–495

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their full gratitude to Professor Albert Sasson for his encouraging comments along the preparation of the manuscript. They would, as well, like to express their thanks to anonymous reviewers for their constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Domínguez-Bocanegra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domínguez-Bocanegra, A.R., Ponce-Noyola, T. & Torres-Muñoz, J.A. Astaxanthin production by Phaffia rhodozyma and Haematococcus pluvialis: a comparative study. Appl Microbiol Biotechnol 75, 783–791 (2007). https://doi.org/10.1007/s00253-007-0889-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0889-9

Keywords

Navigation