Skip to main content
Log in

Enhancement of β-Carotene Production by Over-Expression of HMG-CoA Reductase Coupled with Addition of Ergosterol Biosynthesis Inhibitors in Recombinant Saccharomyces cerevisiae

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In this study, the synergistic effect of overexpressing the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene and adding ergosterol synthesis inhibitor, ketoconazole, on β-carotene production in the recombinant Saccharomyces cerevisiae was investigated. The results showed that the over-expression of HMG-CoA reductase gene and adding 100 mg/l ketoconazole alone can result in 135.1 and 15.6% increment of β-carotene concentration compared with that of the control (2.05 mg/g dry weight of cells), respectively. However, the combination of overexpressing HMG-CoA reductase gene and adding ketoconazole can achieve a 206.8% increment of pigment content (6.29 mg/g dry weight of cells) compared with that of the control. Due to the fact that over-expression of the HMG-CoA reductase gene can simultaneously improve the flux of the sterol and carotenoid biosynthetic pathway, it can be concluded that under the circumstances of blocking sterol biosynthesis, increasing the activity of HMG-CoA reductase can result in more precursors FPP fluxing into carotenoid branch and obtain a high increment of β-carotene production. The results of this study collectively suggest that the combination of overexpressing HMG-CoA reductase gene and supplying ergosterol synthesis inhibitor is an effective strategy to improve the production of desirable isoprenoid compounds such as carotenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Borgers M, Van den Bossche H, De Brabander M (1983) The mechanism of action of the new antimycotic ketoconazole. Am J Med 74:2–8

    Article  PubMed  CAS  Google Scholar 

  2. Britton G (1983) The biochemistry of natural pigments, vol 2. Cambridge University Press, London

    Google Scholar 

  3. Burke D, Dawson D, Stearns T (2000) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  4. Choi JH, Ryu YW, Park YC et al (2009) Synergistic effects of chromosomal ispB deletion and dxs overexpression on coenzyme Q10 production in recombinant Escherichia coli expressing Agrobacterium tumefaciens dps gene. J Biotechnol 144:64–69

    Article  PubMed  CAS  Google Scholar 

  5. Francis K, Danuta P, Sophie M et al (2004) Farnesyl diphosphate synthase activity affects ergosterol level and proliferation of yeast Saccharomyces cerevisae. Cell Biol Int 28:193–197

    Article  Google Scholar 

  6. Goodwin TW (1992) Distribution of carotenoids. Methods Enzymol 213:167–172

    Article  CAS  Google Scholar 

  7. Kim SW, Sco WT, Park YH (1997) Enhanced synthesis of trisporic acids and β-carotene production in Blakeslea trispora by addition of non-ionic surfactant, Span 20. J Ferment Bioeng 84:330–332

    Article  CAS  Google Scholar 

  8. Kim SW, Kim JB, Ryu JM et al (2009) High-level production of lycopene in metabolically engineered E. coli. Process Biochem 44:899–905

    Article  CAS  Google Scholar 

  9. Lees ND, Bard M, Kirsch DR (1999) Biochemistry and molecular biology of sterol synthesis in Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol 34:33–47

    PubMed  CAS  Google Scholar 

  10. Lee PC, Schmidt DC (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60:1–11

    Article  PubMed  CAS  Google Scholar 

  11. Miao LL, Chi S, Tang YC et al (2011) Astaxanthin biosynthesis is enhanced by high carotenogenic gene expression and decrease of fattyacids and ergosterol in a Phaffia rhodozyma mutant strain. FEMS Yeast Res 11:192–201

    Article  PubMed  CAS  Google Scholar 

  12. Misawa N, Shimada H (1998) Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J Biotech 59:169–181

    Article  CAS  Google Scholar 

  13. Pitera DJ, Paddon CJ, Newman JD et al (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207

    Article  PubMed  CAS  Google Scholar 

  14. Polakowski T, Stahl U, Lang C (1998) Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biotechnol 49:66–71

    Article  PubMed  CAS  Google Scholar 

  15. Silva C, Cabral JMS, Keulen F (2004) Isolation of a β-carotene over-producing soil bacterium, Sphingomonas sp. Biotechnol Lett 26:257–262

    Article  PubMed  CAS  Google Scholar 

  16. Shimada HK, Kondo PD, Fraser Y et al (1998) Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64:2676–2680

    PubMed  CAS  Google Scholar 

  17. Sun Y, Yan QP, Vriesekoop F (2007) Effect of two ergosterol biosynthesis inhibitors on lycopene production by Blakeslea trispora. Process Biochem 42:1460–1464

    Article  CAS  Google Scholar 

  18. Verduyn C, Postma E, Scheffers WA et al (1992) Effect of benzoic acid on metabolic fluxes in yeast: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517

    Article  PubMed  CAS  Google Scholar 

  19. Verwaal R, Wang J, Meijnen JP et al (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:4342–4350

    Article  PubMed  CAS  Google Scholar 

  20. Wang GY, Keasling JD (2002) Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Metab Eng 4:193–201

    Article  PubMed  CAS  Google Scholar 

  21. Yan GL, Liang HY, Wang ZQ et al (2011) Important role of catalase in the production of β-carotene by recombinant Saccharomyces cerevisiae under H2O2 stress. Curr Microbiol 62:1056–1061

    Article  PubMed  CAS  Google Scholar 

  22. Yoon SH, Lee SH, Das A et al (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J Biotech 140:218–226

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (No 31000811/C200207) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (20101561). We also thank Dr Rene Verwaal in Netherlands for kindly providing the vector YIplac211YB/I/E* and YIplac204 tHMG1 used in the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-qing Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Gl., Wen, Kr. & Duan, Cq. Enhancement of β-Carotene Production by Over-Expression of HMG-CoA Reductase Coupled with Addition of Ergosterol Biosynthesis Inhibitors in Recombinant Saccharomyces cerevisiae . Curr Microbiol 64, 159–163 (2012). https://doi.org/10.1007/s00284-011-0044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-0044-9

Keywords

Navigation