Skip to main content

Myco-Nanotechnology for Sustainable Agriculture: Challenges and Opportunities

  • Chapter
  • First Online:
Recent Trends in Mycological Research

Abstract

Nanotechnology is a fast-growing field of science that involves synthesis and development of various nanomaterials, its production, manipulation, and application of materials that range in size from less than a micron to that of individual atomic and/or sub-atomic sizes. Formation of nanoparticles employing fungi and their application in medicine, agriculture, and other areas are known as myco-nanotechnology. Fungal nanoparticles could be used in various fields including agriculture, industry, and medicine. In the present chapter, the status of research carried out on fungal nanoparticles in the area of agriculture is consolidated and presented. Myco-nanotechnology has emerged as one of the key eco-friendly technologies in the last decades, and its vast application in the management of bacterial and fungal diseases, pest control, preserved foods, and beverages is constantly being explored. Thus, myco-nanotechnology provides a greener alternative to chemically synthesized nanoparticles. Myco-synthesized nanoparticles found their vast application in pathogen detection and control, wound healing, food preservation, textile fabrics, and many more. The present chapter provides an appraisal on the applications of myco-nanotechnology in agriculture and looks into the prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: a novel tool for a green biotechnology? In: Prasad R, Kumar V, Kumar M, Wang S (eds) Fungal nanobionics: principles and applications. Springer Singapore, Singapore, pp 61–87. https://doi.org/10.1007/978-981-10-8666-3_3

    Chapter  Google Scholar 

  • Acharya S, Laupsien P, Wenzl C, Yan S, Großhans J (2014) Function and dynamics of slam in furrow formation in early Drosophila embryo Dev Biol 386(2):371–384

    Google Scholar 

  • Aguilar-Méndez MA, San Martín-Martínez E, Ortega-Arroyo L, Cobián-Portillo G, Sánchez-Espíndola E (2011) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 13:2525–2532

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53

    Article  CAS  Google Scholar 

  • Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29:221–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anbazhagan S, Azeez S, Morukattu G, Rajan R, Venkatesan K, Thangavelu KP (2017) Synthesis, characterization and biological applications of mycosynthesized silver nanoparticles. 3 Biotech 7:333

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984

    Article  PubMed  PubMed Central  Google Scholar 

  • Baer DR (2011) Surface characterization of nanoparticles. J Surf Anal 17(3):163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baskar G, Chandhuru J, Sheraz Fahad K, Praveen AS (2013) Mycological synthesis, characterization and antifungal activity of zinc oxide nanoparticles. Asian J Pharm Technol 3(4):142–146

    Google Scholar 

  • Bergeson LL (2010) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manag 19(3):79–85

    Article  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 307–319

    Chapter  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48(2):173–179

    Article  CAS  PubMed  Google Scholar 

  • Boisseau P, Loubaton B (2011) Nanomedicine, nanotechnology in medicine. C R Phys 12(7):620–636

    Article  CAS  Google Scholar 

  • Chaudhary M, Misra S (2017) Nanotechnology: resource management for sustainable agriculture. Ind Res J Genet Biotechnol 9:310–313

    Google Scholar 

  • Chhipa H, Joshi P (2016) Nanofertilisers, nanopesticides and nanosensors in agriculture. In: Nanoscience in food and agriculture, vol 1. Springer, Cham, pp 247–282

    Chapter  Google Scholar 

  • Cross KM, Lu Y, Zheng T, Zhan J, McPherson G, John V (2009) Water decontamination using iron and iron oxide nanoparticles. In: Nanotechnology applications for clean water. William Andrew Publishing, Norwich, pp 347–364

    Chapter  Google Scholar 

  • Devi PV, Duraimurugan P, Chandrika KSVP, Gayatri B, Prasad RD (2019) Nanobiopesticides for crop protection. In: Nanobiotechnology applications in plant protection. Springer, Cham, pp 145–168

    Chapter  Google Scholar 

  • Du L, Xian L, Feng JX (2011) Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J Nanopart Res 13(3):921–930

    Article  CAS  Google Scholar 

  • Germain V, Li J, Ingert D, Wang ZL, Pileni MP (2003) Stacking faults in formation of silver nanodisks. J Phys Chem B 107(34):8717–8720

    Article  CAS  Google Scholar 

  • Godfray HCJ, Garnett T (2014) Food security and sustainable intensification. Philos Trans R Soc B Biol Sci 369(1639):20120273

    Article  Google Scholar 

  • González JOW, Gutiérrez MM, Ferrero AA, Band BF (2014) Essential oils nanoformulations for stored-product pest control–characterization and biological properties. Chemosphere 100:130–138

    Article  CAS  Google Scholar 

  • Gopal S, Srinivas V, Zameer F, Kreft J (2009) Prediction of proteins putatively involved in the thiol: disulfide redox metabolism of a bacterium (Listeria): the CXXC motif as query sequence. In Silico Biol 9(56):407–414

    Article  CAS  PubMed  Google Scholar 

  • Holdren JP (2011) The national nanotechnology initiative strategic plan report at subcommittee on nanoscale science, engineering and technology of committee on technology. National Science Technology Council (NSTC), Arlington

    Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kar PK, Murmu S, Saha S, Tandon V, Acharya K (2014) Antihelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 9(1):e84693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013) Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29(2):191–207

    Article  CAS  PubMed  Google Scholar 

  • Khan NT, Jameel N, Rehman SUA (2016) Optimizing physioculture conditions for the synthesis of silver nanoparticles from Aspergillus niger. J Nanomed Nanotechnol 7(5):7–10

    Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Karthik L, Kumar G, Roa KB (2011) Biosynthesis of silver nanoparticles from marine yeast and their antimicrobial activity against multidrug resistant pathogens. Pharmacologyonline 3:1100–1111

    Google Scholar 

  • Kumar DA, Palanichamy V, Roopan SM (2014) Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 127:168–171

    Article  CAS  PubMed  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39(3):194–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Lu YC, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) Platinum- gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium air batteries. J Am Chem Soc 132(35):12170–12171

    Article  CAS  PubMed  Google Scholar 

  • Madhusudan M, Zameer F, Naidu A, Dhananjaya BL, Hegdekatte R (2016) Evaluating the inhibitory potential of Withania somnifera on platelet aggregation and inflammation enzymes: an in vitro and in silico study. Pharm Biol 54:1936–1941

    Article  CAS  Google Scholar 

  • Manjunatha HP, Singh H, Chauhan JB, Zameer F, Garampalli RH (2013) Induction of resistance against sorghum downy mildew by seed treatment with Duranta repens extracts. IOSR J Agric Vet Sci 3:37–44

    Article  Google Scholar 

  • Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29(1):1–13

    Google Scholar 

  • Mukherjee A, Sinha I, Das R. (2015). Application of nanotechnology in agriculture: future prospects. In: Outstanding Young Chemical Engineers (OYCE) conference, pp 13–14

    Google Scholar 

  • Mukhopadhyay SS (2005) Weathering of soil minerals and distribution of elements: pedochemical aspects. Clay Res 24(2):183–199

    CAS  Google Scholar 

  • Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21(6):2057

    Article  CAS  PubMed  Google Scholar 

  • Pankaj S, Jeevan KP, Chirag GV, Sunil SM, Muthuchelian K, Vivek C, Farhan Z (2020) Targeting Imd pathway receptor in Drosophila melanogaster and repurposing of phyto-inhibitors: structural modulation and molecular dynamics. J Biomol Struct Dyn 14:1–12

    Google Scholar 

  • Prasad N, Purushothama CR, Zameer F, Shirahatti PS (2012) Phomopsis azadirachtae genes of 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence. First sequence report of Phomopsis azadirachtae: the incident of Die-Back of Neem. GenBank ID: AB769975.1

    Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis? Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(2):316–330

    Article  PubMed  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad A, Baker S, Prasad MN, Devi AT, Satish S, Zameer F et al (2019a) Phytogenic synthesis of silver nanobactericides for anti-biofilm activity against human pathogen H. pylori. SN Appl Sci 1:341

    Article  CAS  Google Scholar 

  • Prasad A, Devi AT, Prasad MN, Zameer F, Shruthi G, Shivamallu C (2019b) Phyto anti-biofilm elicitors as potential inhibitors of Helicobacter pylori. 3 Biotech 9(2):53

    Google Scholar 

  • Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids Surf A Physicochem Eng Asp 377(1–3):212–216

    Article  CAS  Google Scholar 

  • Priyadarshini E, Pradhan N, Sukla LB, Panda PK (2014) Controlled synthesis of gold nanoparticles using Aspergillus terreus IF0 and its antibacterial potential against Gram negative pathogenic bacteria. J Nanotechol 2014:653198

    Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    Article  CAS  PubMed  Google Scholar 

  • Ramu R, Shirahatti PS, Nayakavadi S, Vadivelan R, Zameer F, Dhananjaya BL, Prasad NMN (2016) The effect of a plant extract enriched in stigmasterol and β-sitosterol on glycaemic status and glucose metabolism in alloxan-induced diabetic rats. Food Funct 7(9):3999–4011

    Article  CAS  PubMed  Google Scholar 

  • Ramu R, Shirahatti PS, Dhanabal SP, Zameer F, Dhananjaya BL, Prasad MN (2017) Investigation of antihyperglycaemic activity of banana (Musa sp. Var. Nanjangud rasa bale) flower in normal and diabetic rats. Pharmacogn Mag 13(Suppl 3):S417

    PubMed  PubMed Central  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002

    Article  CAS  PubMed  Google Scholar 

  • Sarkar J, Dey P, Saha S, Acharya K (2011) Mycosynthesis of selenium nanoparticles. Micro Nano Lett 6(8):599–602

    Article  CAS  Google Scholar 

  • Satapathy P, Khan K, Devi AT, Patil AG, Govindaraju AM, Gopal S, Prasad MN, More VS, Kakarla RR, Raghu AV, Hudeda S, Sunil SM, Zameer F (2019) Synthetic gutomics: Deciphering the microbial code for futuristic diagnosis and personalized medicine. Methods in Microbiology - Nanotechnology, Academic Press (Elsevier), United Kingdom, 46:197–225

    Google Scholar 

  • Scott N, Chen H (2012) Nanoscale science and engineering for agriculture and food systems. Ind Biotechnol 8(6):340–343

    Article  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh A, Singh NB, Hussain I, Singh H, Singh SC (2015) Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int J Pharm Sci Invent 4(8):25–40

    CAS  Google Scholar 

  • Singh H, Zameer F, Khanum SA, Garampalli RH (2016) Durantol-a phytosterol antifungal contributor from Duranta repens Linn. For organic Management of Sorghum Downy Mildew. Eur J Plant Pathol 146(3):671–682

    Article  CAS  Google Scholar 

  • Singhal U, Khanuja M, Prasad R, Varma A (2017) Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front Microbiol 8:1909

    Article  PubMed  PubMed Central  Google Scholar 

  • Syed A, Ahmad A (2012) Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 97:27–31

    Article  CAS  PubMed  Google Scholar 

  • Vundavalli R, Vundavalli S, Nakka M, Rao DS (2015) Biodegradable nano-hydrogels in agricultural farming-alternative source for water resources. Procedia Mater Sci 10:548–554

    Article  CAS  Google Scholar 

  • Witanachchi S, Merlak M, Mahawela P (2012) Nanotechnology solutions to greenhouse and urban agriculture. Technol Innov 14(2):209–217

    Article  CAS  Google Scholar 

  • Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37(11):2099–2120

    Article  CAS  PubMed  Google Scholar 

  • Yuvakkumar R, Suresh J, Saravanakumar B, Nathanael AJ, Hong SI, Rajendran V (2015) Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc 137:250–258

    Article  CAS  PubMed  Google Scholar 

  • Zameer F, Gopal S, Krohne G, Kreft J (2010a) Development of a biofilm model for Listeria monocytogenes EGD-e. World J Microbiol Biotechnol 26(6):1143–1147

    Article  CAS  Google Scholar 

  • Zameer F, Kreft J, Gopal S (2010b) Interaction of Listeria monocytogenes and Staphylococcus epidermidis in dual species biofilms. J Food Saf 30(4):954–968

    Article  Google Scholar 

  • Zameer F, Rukmangada MS, Chauhan JB, Khanum SA, Kumar P, Devi AT, Dhananjaya BL (2016) Evaluation of adhesive and anti-adhesive properties of Pseudomonas aeruginosa biofilms and their inhibition by herbal plants. Iran J Microbiol 8(2):108

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Mr. Anirudh Gururaj Patil (LIF-02-2019-20) would like to thank DST-KSTePS, GoK for providing DST Ph.D. fellowship. Dr. Farhan Zameer (FZ) sincerely thank Prof. Dr. Shubha Gopal, Department of Studies in Microbiology, University of Mysore and Prof. Dr. Juergen Kreft, Department of Microbiology, University of Wurzburg, Germany for their mentorship. FZ is also thankful to Dr. MN Nagendra Prasad, Department of Biotechnology, JSS Science and Technology University, Mysore and Dr. Shaukath Ara Khanum, Department of Chemistry, Yuvaraja College, University of Mysore, Mysore for their long-term collaboration in understanding the biology of chemical molecules. All authors thank Prof. Sunil S. More and Prof. Muthuchelian K, SBAS, Dayananda Sagar University (DSU) for continuous support. Further, we thank Mr. Vimal John Samuel, Mrs. K.B. Premakumari, Mr. Sunil, and Prof. V. Murgan, from the School of Pharmacy, DSU for their technical assistance during the preparation of the manuscript. Further, we extend our gratitude towards the management and office bearers of Dayananda Sagar University, Bengaluru, Karnataka, India, for constant inspiration, motivation, and encouragement to pursue scientific research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patil, A.G. et al. (2021). Myco-Nanotechnology for Sustainable Agriculture: Challenges and Opportunities. In: Yadav, A.N. (eds) Recent Trends in Mycological Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-60659-6_20

Download citation

Publish with us

Policies and ethics