Skip to main content

Advertisement

Log in

Assessment of the biomass hydrolysis potential in bacterial isolates from a volcanic environment: biosynthesis of the corresponding activities

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The biomass degrading enzymatic potential of 101 thermophilic bacterial strains isolated from a volcanic environment (Santorini, Aegean Sea, Greece) was assessed. 80 % of the strains showed xylanolytic activity in Congo Red plates, while only eight could simultaneously hydrolyze cellulose. Fifteen isolates were selected on the basis of their increased enzyme production, the majority of which was identified as Geobacilli through 16S rDNA analysis. In addition, the enzymatic profile was evaluated in liquid cultures using various carbon sources, a procedure that revealed lack of correlation on xylanase levels between the two cultivation modes and the inability of solid CMC cultures to fully unravel the cellulose degrading potential of the isolates. Strain SP24, showing more than 99 % 16S DNA similarity with Geobacillus sp. was further studied for its unique ability to simultaneously exhibit cellulase, xylanase, β-glucosidase and β-xylosidase activities. The first two enzymes were produced mainly extracellularly, while the β-glycosidic activities were primarily detected in the cytosol. Maximum enzyme production by this strain was attained using a combination of wheat bran and xylan in the growth medium. Bioreactor cultures showed that aeration was necessary for both enhanced growth and enzyme production. Aeration had a strong positive effect on cellulase production while it negatively affected expression of β-glucosidase. Xylanase and β-xylosidase production was practically unaffected by aeration levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelnasser SSI, El-diwany AI (2007) Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust J Basic Appl Sci 1:473–478

    Google Scholar 

  • Asha Poorna C, Prema P (2007) Production of cellulase-free endoxylanase from novel alkalophilic thermotolerent Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling. Bioresour Technol 98:485–490

    Article  CAS  Google Scholar 

  • Baharuddin AS, Abd Razak MN, Hock LS, Ahmad MN, Abd-Aziz S, Abdul Rahman NA, Shah UKM, Hassan MA, Sakai K, Shirai Y (2010) Isolation and characterization of thermophilic cellulase-producing bacteria from empty fruit bunches-palm oil mill effluent compost. Am J Appl Sci 7:56–62

    Article  CAS  Google Scholar 

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  • Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31:871–888

    Article  CAS  Google Scholar 

  • Bocchini D, Gomes E, Da Silva R (2008) Xylanase production by Bacillus circulans D1 using maltose as carbon source. Appl Biochem Biotechnol 146:29–37

    Article  CAS  Google Scholar 

  • Canakci S, Inan K, Kacagan M, Belduz A (2007) Evaluation of arabinofuranosidase and xylanase activities of Geobacillus spp. isolated from some hot springs in Turkey. J Microbiol Biotechnol 17:1262–1270

    CAS  Google Scholar 

  • Chan K, Au K (1987) Studies on cellulase production by a Bacillus subtilis. Antonie Van Leeuwenhoek 53:125–136

    Article  CAS  Google Scholar 

  • Chauve M, Mathis H, Huc D, Casanave D, Monot F, Lopes Ferreira N (2010) Comparative kinetic analysis of two fungal β-glucosidases. Biotechnol Biofuels 3:3

    Article  Google Scholar 

  • da Cruz G, Angolini C, de Oliveira L, Lopes P, de Vasconcellos S, Crespim E, de Oliveira V, dos Santos Neto E, Marsaioli A (2010) Searching for monooxygenases and hydrolases in bacteria from an extreme environment. Appl Microbiol Biotechnol 87:319–329

    Article  CAS  Google Scholar 

  • de Souza D, Tychanowicz G, de Souza C, Peralta R (2006) Co-production of ligninolytic enzymes by Pleurotus pulmonarius on wheat bran solid state cultures. J Basic Microbiol 46:126–134

    Article  Google Scholar 

  • Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucl Acids Res 17:7843–7853

    Article  CAS  Google Scholar 

  • Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci USA 104:5602–5607

    Article  CAS  Google Scholar 

  • Fong J, Svenson C, Nakasugi K, Leong C, Bowman J, Chen B, Glenn D, Neilan B, Rogers P (2006) Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost. Extremophiles 10:363–372

    Article  CAS  Google Scholar 

  • Fontes CMGA, Gilbert HJ, Hazlewood GP, Clarke JH, Prates JAM, McKie VA, Nagy T, Fernandes TH, Ferreira LMA (2000) A novel Cellvibrio mixtus family 10 xylanase that is both intracellular and expressed under non-inducing conditions. Microbiology 146:1959–1967

    CAS  Google Scholar 

  • García-Kirchner O, Segura-Granados M, Rodríguez-Pascual P (2005) Effect of media composition and growth conditions on production of β-glucosidase by Aspergillus niger C-6. Appl Biochem Biotechnol 121:347–359

    Article  Google Scholar 

  • Haught C, Wilkinson DL, Zgafas K, Harrison RG (1994) A method to insert a DNA fragment into a double-stranded plasmid. Biotechniques 16:46–48

    CAS  Google Scholar 

  • Huang T-K, Wang P-M, Wu W-T (2001) Cultivation of Bacillus thuringiensis in an airlift reactor with wire mesh draft tubes. Biochem Eng J 7:35–39

    Article  Google Scholar 

  • Izquierdo JA, Sizova MV, Lynd LR (2010) Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost. Appl Environ Microbiol 76:3545–3553

    Article  CAS  Google Scholar 

  • Kim J, Hur S, Hong J (2005) Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnol Lett 27:313–316

    Article  CAS  Google Scholar 

  • Kosugi A, Murashima K, Doi RH (2001) Characterization of xylanolytic enzymes in Clostridium cellulovorans: Expression of xylanase activity dependent on growth substrates. J Bacteriol 183:7037–7043

    Google Scholar 

  • Kublanov IV, Perevalova AA, Slobodkina GB, Lebedinsky AV, Bidzhieva SK, Kolganova TV, Kaliberda EN, Rumsh LD, Haertle T, Bonch-Osmolovskaya EA (2009) Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon caldera, Kamchatka (Russia). Appl Environ Microbiol 75:286–291

    Article  CAS  Google Scholar 

  • Lama L, Calandrelli V, Gambacorta A, Nicolaus B (2004) Purification and characterization of thermostable xylanase and β-xylosidase by the thermophilic bacterium Bacillus thermantarcticus. Res Microbiol 155:283–289

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–147

    Google Scholar 

  • Li W, Zhang W–W, Yang M–M, Chen Y-L (2008) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol 40:195–201

    Article  CAS  Google Scholar 

  • Lopez-Contreras AM, Gabor K, Martens AA, Renckens BAM, Claassen PAM, van der Oost J, de Vos WM (2004) Substrate-induced production and secretion of cellulases by Clostridium acetobutylicum. Appl Environ Microbiol 70:5238–5243

    Article  CAS  Google Scholar 

  • Mac Faddin JF (1980) Biochemical tests for identification of medical bacteria, 2nd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Martinez RJ, Mills HJ, Story S, Sobecky PA (2006) Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Environ Microbiol 8:1783–1796

    Article  CAS  Google Scholar 

  • Martins Cordeiro CA, Leal Martins ML, Luciano AB, Freitas da Silva R (2002) Production and properties of xylanase from thermophilic Bacillus sp. Braz Arch Biol Technol 45:413–418

    Article  Google Scholar 

  • Maugeri TL, Gugliandolo C, Caccamo D, Stackebrandt E (2001) A polyphasic taxonomic study of thermophilic bacilli from shallow, marine vents. Syst Appl Microbiol 24:572–587

    Article  CAS  Google Scholar 

  • Maugeri TL, Gugliandolo C, Caccamo D, Stackebrandt E (2002) Three novel halotolerant and thermophilic Geobacillus strains from shallow marine vents. Syst Appl Microbiol 25:450–455

    Article  CAS  Google Scholar 

  • McMullan G, Christie J, Rahman T, Banat I, Ternan N, Marchant R (2004) Habitat, applications and genomics of the aerobic, thermophilic genus Geobacillus. Biochem Soc Trans 32:214–217

    Article  CAS  Google Scholar 

  • Md Champdoré, Staiano M, Rossi M, D’Auria S (2007) Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest. J R Soc Interface 4:183–191

    Article  Google Scholar 

  • Meintanis C, Chalkou KI, Kormas KA, Karagouni AD (2006) Biodegradation of crude oil by thermophilic bacteria isolated from a volcano island. Biodegradation 17:105–111

    Article  Google Scholar 

  • Miller G (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Nanmori T, Watanabe T, Shinke R, Kohno A, Kawamura Y (1990) Purification and properties of thermostable xylanase and beta-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. J Bacteriol 172:6669–6672

    CAS  Google Scholar 

  • Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446

    CAS  Google Scholar 

  • Ng IS, Li C-W, Yeh Y-F, Chen P, Chir J-L, Ma C-H, Yu S-M, Ho T-h, Tong C-G (2009) A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures. Extremophiles 13:425–435

    Article  CAS  Google Scholar 

  • Pachiadaki MG, Lykousis V, Stefanou EG, Kormas KA (2010) Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiol Ecol 72:429–444

    Article  CAS  Google Scholar 

  • Percival Zhang Y, Himmel M, Mielenz J (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  Google Scholar 

  • Prathumpai W, Flitter SJ, McIntyre M, Nielsen J (2004) Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus. Appl Microbiol Biotechnol 65:714–719

    Article  CAS  Google Scholar 

  • Prokofeva M, Kublanov I, Nercessian O, Tourova T, Kolganova T, Lebedinsky A, Bonch-Osmolovskaya E, Spring S, Jeanthon C (2005) Cultivated anaerobic acidophilic/acidotolerant thermophiles from terrestrial and deep-sea hydrothermal habitats. Extremophiles 9:437–448

    Article  Google Scholar 

  • Qinnghe C, Xiaoyu Y, Tiangui N, Cheng J, Qiugang M (2004) The screening of culture condition and properties of xylanase by white-rot fungus Pleurotus ostreatus. Process Biochem 39:1561–1566

    Article  Google Scholar 

  • Quintero D, Velasco Z, Hurtado-Gómez E, Neira JL, Contreras LM (2007) Isolation and characterization of a thermostable β-xylosidase in the thermophilic bacterium Geobacillus pallidus. Biochim Biophys Acta, Proteins Proteomics 1774:510–518

    Article  CAS  Google Scholar 

  • Rastogi G, Muppidi G, Gurram R, Adhikari A, Bischoff K, Hughes S, Apel W, Bang S, Dixon D, Sani R (2009) Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. J Ind Microbiol Biotechnol 36:585–598

    Article  CAS  Google Scholar 

  • Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101:8798–8806

    Article  CAS  Google Scholar 

  • Reymond J-L, Babiak P (2007) Screening Systems. In: Ulber R, Sell D (eds) White biotechnology, vol 105. Advances in biochemical engineering/biotechnology, vol 105. Springer, Berlin, Heidelberg, pp 31–58

    Google Scholar 

  • Robson LM, Chambliss GH (1984) Characterization of the cellulolytic activity of a Bacillus isolate. Appl Environ Microbiol 47:1039–1046

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, NY

    Google Scholar 

  • Saratale G, Oh S (2011) Production of thermotolerant and alkalotolerant cellulolytic enzymes by isolated Nocardiopsis sp. KNU. Biodegradation 22:905–919

    Article  CAS  Google Scholar 

  • Sharma A, Adhikari S, Satyanarayana T (2007) Alkali-thermostable and cellulase-free xylanase production by an extreme thermophile Geobacillus thermoleovorans. World J Microbiol Biotechnol 23:483–490

    Article  CAS  Google Scholar 

  • Sharma A, Pandey A, Shouche YS, Kumar B, Kulkarni G (2009) Characterization and identification of Geobacillus spp. isolated from Soldhar hot spring site of Garhwal Himalaya, India. J Basic Microbiol 49:187–194

    Article  CAS  Google Scholar 

  • Sharrock K (1988) Cellulase assay methods: a review. J Biochem Biophys Meth 17:81–105

    Article  CAS  Google Scholar 

  • Singh J, Batra N, Sobti R (2004) Purification and characterisation of alkaline cellulase produced by a novel isolate, Bacillus sphaericus JS1. J Ind Microbiol Biotechnol 31:51–56

    Article  CAS  Google Scholar 

  • Subramaniyan S, Prema P, Ramakrishna SV (1997) Isolation and screening for alkaline thermostable xylanases. J Basic Microbiol 37:431–437

    Article  CAS  Google Scholar 

  • Sun X, Liu Z, Qu Y, Li X (2008) The effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens. Appl Biochem Biotechnol 146:119–128

    Article  CAS  Google Scholar 

  • Taechapoempol K, Sreethawong T, Rangsunvigit P, Namprohm W, Thamprajamchit B, Rengpipat S, Chavadej S (2011) Cellulase-producing bacteria from Thai higher termites, Microcerotermes sp.: enzymatic activities and ionic liquid tolerance. Appl Biochem Biotechnol 164:204–219

    Article  CAS  Google Scholar 

  • Tai S-K, Lin H-PP, Kuo J, Liu J-K (2004) Isolation and characterization of a cellulolytic Geobacillus thermoleovorans T4 strain from sugar refinery wastewater. Extremophiles 8:345–349

    Article  CAS  Google Scholar 

  • Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780

    CAS  Google Scholar 

  • Tiago I, Teixeira I, Silva S, Chung P, Veríssimo A, Manaia CM (2004) Metabolic and genetic diversity of mesophilic and thermophilic bacteria isolated from composted municipal sludge on poly-ε-caprolactones. Curr Microbiol 49:407–414

    Article  CAS  Google Scholar 

  • Turner P, Mamo G, Karlsson E (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9

    Article  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  Google Scholar 

  • Viikari L, Alapuranen M, Puranen T, Vehmaanperä J, Siika-aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. In: Olsson L (ed) Biofuels, vol 108. Advances in biochemical engineering/biotechnology, vol 108. Springer, Berlin, Heidelberg, pp 121–145

    Google Scholar 

  • Wagschal K, Heng C, Lee C, Robertson G, Orts W, Wong D (2009) Purification and characterization of a glycoside hydrolase family 43 β-xylosidase from Geobacillus thermoleovorans IT-08. Appl Biochem Biotechnol 155:1–10

    Article  Google Scholar 

  • Wu S, Liu B, Zhang X (2006) Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl Microbiol Biotechnol 72:1210–1216

    Article  CAS  Google Scholar 

  • Yuguo Z, Zhao W, Xiaolong C, Chunhua Z (2001) Production of extracellular protease from crude substrates with dregs in an external-loop airlift bioreactor with lower ratio of height to diameter. Biotechnol Prog 17:273–277

    Article  CAS  Google Scholar 

  • Zhang Y-HP, Lynd LR (2005) Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J Bacteriol 187:99–106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PMS wishes to express her gratitude to the State Scholarships Foundation of Greece for providing the financial support for her Ph.D. thesis, part of which is presented in the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris G. Hatzinikolaou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stathopoulou, P.M., Galanopoulou, A.P., Anasontzis, G.E. et al. Assessment of the biomass hydrolysis potential in bacterial isolates from a volcanic environment: biosynthesis of the corresponding activities. World J Microbiol Biotechnol 28, 2889–2902 (2012). https://doi.org/10.1007/s11274-012-1100-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1100-8

Keywords

Navigation