Skip to main content
Log in

Purification and Characterization of a Glycoside Hydrolase Family 43 β-xylosidase from Geobacillus thermoleovorans IT-08

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The gene encoding a glycoside hydrolase family 43 β-xylosidase (GbtXyl43A) from the thermophilic bacterium Geobacillus thermoleovorans strain IT-08 was synthesized and cloned with a C-terminal His-tag into a pET29b expression vector. The recombinant gene product termed GbtXyl43A was expressed in Escherichia coli and purified to apparent homogeneity. Michaelis–Menten kinetic parameters were obtained for the artificial substrates p-nitrophenyl-β-d-xylopyranose (4NPX) and p-nitrophenyl-α-l-arabinofuranose (4NPA), and it was found that the ratio k cat/K m 4NPA/k cat/K m 4NPX was ∼7, indicting greater catalytic efficiency for 4NP hydrolysis from the arabinofuranose aglycon moiety. Substrate inhibition was observed for the substrates 4-methylumbelliferyl xylopyranoside (muX) and the arabinofuranoside cogener (muA), and the ratio k cat/K m muA/k cat/K m muX was ∼5. The enzyme was competitively inhibited by monosaccharides, with an arabinose K i of 6.8 ± 0.62 mM and xylose K i of 76 ± 8.5 mM. The pH maxima was 5.0, and the enzyme was not thermally stable above 54 °C, with a t 1/2 of 35 min at 57.5 °C. GbtXyl43A showed a broad substrate specificity for hydrolysis of xylooligosaccharides up to the highest degree of polymerization tested (xylopentaose), and also released xylose from birch and beechwood arabinoxylan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Biely, P. (2003). In J. R. Whitaker, A. G. J. Voragen, & D. W. S. Wong (Eds.), Handbook of food enzymology pp. 879–915. New York: Marcel Dekker.

    Google Scholar 

  2. Saha, B. C. (2003). Journal of Industrial Microbiology & Biotechnology, 30, 279–291. doi:10.1007/s10295-003-0049-x.

    Article  CAS  Google Scholar 

  3. Shallom, D., & Shoham, Y. (2003). Current Opinion in Microbiology, 6, 219–228. doi:10.1016/S1369-5274(03)00056-0.

    Article  CAS  Google Scholar 

  4. Jordan, D. B., & Li, X. -L. (2007). Biochimica et Biophysica Acta, 1774, 1192–1198.

    CAS  Google Scholar 

  5. Mai, V., Wiegel, J., & Lorenz, W. W. (2000). Gene, 247, 137–143. doi:10.1016/S0378-1119(00)00106-2.

    Article  CAS  Google Scholar 

  6. Lee, R. C., Hrmova, M., Burton, R. A., Lahnstein, J., & Fincher, G. B. (2003). The Journal of Biological Chemistry, 278, 5377–5387. doi:10.1074/jbc.M210627200.

    Article  CAS  Google Scholar 

  7. Haki, G. D., & Rakshit, S. K. (2003). Bioresource Technology, 89, 17–34. doi:10.1016/S0960-8524(03)00033-6.

    Article  CAS  Google Scholar 

  8. Sunna, A., Prowe, S. G., Stoffregen, T., & Antranikan, G. (1997). FEMS Microbiology Letters, 148, 209–216. doi:10.1111/j.1574-6968.1997.tb10290.x.

    Article  CAS  Google Scholar 

  9. Cho, A.-R., Yoo, S.-K., & Kim, E.-J. (2000). FEMS Microbiology Letters, 186, 235–238. doi:10.1111/j.1574-6968.2000.tb09110.x.

    Article  CAS  Google Scholar 

  10. Puspaningsiha, N.N.T. (2004). PhD thesis, Bogor Agricultural University, Indonesia.

  11. Rohman, A., Oosterwijk, N. V., Kralj, S., Dijkhuizen, L., Dijkstrab, B. W., & Puspaningsiha, N. N. T. (2007). Acta Crystallographica, F63, 932–935.

    CAS  Google Scholar 

  12. Wagschal, K., Franqui-Espiet, D., Lee, C. C., Robertson, G. H., & Wong, D. W. S. (2005). Applied and Environmental Microbiology, 71, 5318–5323. doi:10.1128/AEM.71.9.5318-5323.2005.

    Article  CAS  Google Scholar 

  13. Tsujibo, H., Kosaka, M., Ikenishi, S., Sato, T., Katsushiro, M., & Inamori, Y. (2004). Journal of Bacteriology, 186, 1029–1037. doi:10.1128/JB.186.4.1029-1037.2004.

    Article  CAS  Google Scholar 

  14. Shulami, S., Gat, O., Sonenshein, A. L., & Shoham, Y. (1999). Journal of Bacteriology, 181, 3695–3704.

    CAS  Google Scholar 

  15. Coutinho, P. M., & Henrissat, B. (1999). In H. J. Gilbert, et al. (Ed.), Recent Advances in carbohydrate bioengineering pp. 3–12. Cambridge: The Royal Society of Chemistry, Cambridge.

    Google Scholar 

  16. Takami, H., Takaki, Y., & Uchiyama, I. (2002). Nucleic Acids Research, 30, 3927–3935. doi:10.1093/nar/gkf526.

    Article  CAS  Google Scholar 

  17. Wagschal, K., Franqui-Espiet, D., Lee, C. C., Kibblewhite-Accinelli, R. E., Robertson, G. H., & Wong, D. W. S. (2007). Enzyme and Microbial Technology, 40, 747–753. doi:10.1016/j.enzmictec.2006.06.007.

    Article  CAS  Google Scholar 

  18. Wagschal, K., Heng, C., Lee, C. C., & Wong, D. W. S. (2008). Applied Microbiology and Biotechnology. doi:10.1007/s00253-008-1662-4.

  19. Pitson, S. M., Voragen, A. G. J., & Beldman, G. (1996). FEBS Letters, 398, 7–11. doi:10.1016/S0014-5793(96)01153-2.

    Article  CAS  Google Scholar 

  20. Braun, C., Meinke, A., Ziser, L., & Withers, S. G. (1993). Analytical Biochemistry, 212, 259–262. doi:10.1006/abio.1993.1320.

    Article  CAS  Google Scholar 

  21. Kersters-Hilderson, H., Claeyssens, M., Doorslaer, E. V., & Bruyne, C. K. D. (1976). Carbohydrate Research, 47, 269–273. doi:10.1016/S0008-6215(00)84192-0.

    Article  CAS  Google Scholar 

  22. Koshland, D. E. (1953). Biological Reviews of the Cambridge Philosophical Society, 28, 416–436. doi:10.1111/j.1469-185X.1953.tb01386.x.

    Article  CAS  Google Scholar 

  23. Ly, H. D., & Withers, S. G. (1999). Annual Review of Biochemistry, 68, 487–522. doi:10.1146/annurev.biochem.68.1.487.

    Article  CAS  Google Scholar 

  24. Shallom, D., Leon, M., Bravman, T., Ben-David, A., Zaide, G., Belakhov, V., et al. (2005). Biochemistry, 44, 387–397. doi:10.1021/bi048059w.

    Article  CAS  Google Scholar 

  25. Brüx, C., Ben-David, A., Shallom-Shezifi, D., Leon, M., Niefind, K., Shoham, G., et al. (2006). Journal of Molecular Biology, 359, 97–109. doi:10.1016/j.jmb.2006.03.005.

    Article  Google Scholar 

  26. Jordan, D. B., Li, X.-L., Dunlap, C. A., Whitehead, T. R., & Cotta, M. A. (2007). Applied Biochemistry and Biotechnology, 141, 51–76. doi:10.1007/s12010-007-9210-8.

    Article  CAS  Google Scholar 

  27. Malet, C., & Planas, A. (1997). Biochemistry, 36, 13838–13848. doi:10.1021/bi9711341.

    Article  CAS  Google Scholar 

  28. Quiocho, F. A. (1989). Pure and Applied Chemistry, 61, 1293–1306. doi:10.1351/pac198961071293.

    Article  CAS  Google Scholar 

  29. Roey, P. V., & Salerno, J. M. (1988). Acta Crystallographica, C44, 865–867.

    Google Scholar 

  30. Jordan, D. B., & Braker, J. D. (2007). Archives of Biochemistry and Biophysics, 465, 231–246. doi:10.1016/j.abb.2007.05.016.

    Article  CAS  Google Scholar 

  31. Davies, G. J., Wilson, K. S., & Henrissat, B. (1997). The Biochemical Journal, 321, 557–559.

    CAS  Google Scholar 

  32. Timell, T. (1964). Advances in Carbohydrate Chemistry and Biochemistry, 19, 247–299.

    CAS  Google Scholar 

Download references

Acknowledgements

Reference to a company and/or products is for purposes of information and does not imply approval or recommendation of the product to the exclusion of others that may also be suitable. All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, age, marital status, or handicap.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Wagschal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagschal, K., Heng, C., Lee, C.C. et al. Purification and Characterization of a Glycoside Hydrolase Family 43 β-xylosidase from Geobacillus thermoleovorans IT-08. Appl Biochem Biotechnol 155, 1–10 (2009). https://doi.org/10.1007/s12010-008-8362-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8362-5

Keywords

Navigation