Skip to main content

Mangroves: Types and Importance

  • Chapter
  • First Online:
Mangroves: Ecology, Biodiversity and Management

Abstract

Mangroves are of great ecological significance and economic importance. They are of different types—deltaic, estuarine, lagoon, and fringe mangroves—based on coastal location. The mangroves are of six functional types—fringe, riverine, basin, over-wash, scrub, and hammock. They are also of three types—river-dominated, tide-dominated, and interior mangroves—based on tidal range and sedimentation. In addition, there are six broad types of mangroves: large deltaic systems, tidal plains, composite plains, fringing barriers with lagoons, drowned bedrock valleys, and coral coasts. Mangroves are ecologically significant in protecting the coast from solar UV-B radiation, ‘greenhouse’ gases, cyclones, floods, sea level rise, wave action, and coastal soil erosion. They act as nutrient sinks, sediment traps, and nutrient source to support the food web in other coastal ecosystems. The mangroves are the most efficient in carbon sequestration and climate change mitigation. They provide feeding, breeding, and nursery grounds for many food fishes and wildlife animals. They protect other marine systems such as islands, coral reefs, seaweeds, and seagrass meadows. Mangroves are economically valuable in supplying the forestry and fishery products and also in serving as sites for developing a burgeoning eco-tourism. The mangroves are of great bioprospecting potential as a source of salt-tolerant genes, chemicals, and valuable products that can be used in medical, industrial, agricultural, and food sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alongi DM (1998) Coastal Ecosystems Processes. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Alongi DM (2007) Mangrove forests of Papua, In: Marshall AJ, Beehler B.M, (eds.) Ecology of Papua, Part 1, Periplus Editions (HK) Ltd., pp. 824–857.

    Google Scholar 

  • Alongi DM (2012) Carbon sequestering in mangrove forests. Carbon Manage 3: 313–322

    Article  CAS  Google Scholar 

  • Alongi DM (2014) Carbon cycling and storage in mangrove forests. Ann Rev Mar Sci 6: 195–219.

    Article  PubMed  Google Scholar 

  • Alongi DM (2018) (ed.) Mangrove Forests: In blue Carbon, Springer, Switzerland, pp. 23–36.

    Google Scholar 

  • Alongi DM (2020) Global Significance of Mangrove Blue Carbon in Climate Change Mitigation. Sci 2(3): 57. https://doi.org/10.3390/sci2030057.

    Article  Google Scholar 

  • Alongi DM, Boto KG, Robertson AI (1992) In: Robertson AI, Alongi DM, (eds.) Tropical Mangrove Ecosystems, American Geophysical Union, Washington, D.C, pp. 251–292.

    Google Scholar 

  • Asmathunisha N (2013) Mangrove-Based Nanoparticles: Synthesis, Characterization andApplications (Ph.D. thesis). CAS in Marine Biology, Annamalai University, India, 261 pp.

    Google Scholar 

  • Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B: Biointerfaces 103: 283–287.

    Google Scholar 

  • Asmathunisha N, Kathiresan K (2018) Seasonal variation changes in biosynthesis of nanoparticles by mangroves. Inter J Pharmacol Biosci 9B: 302–310.

    Google Scholar 

  • Asmathunisha N, Kathiresan K, Anburaj R, Nabeel MA (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B: Biointerfaces 79: 488–493.

    Google Scholar 

  • Atwood TB, Connolly RM, Almahasheer H, Carnell PE, Duarte CM, Lewis CJE, Irigoien X, Kelleway JJ, Lavery PS, Macreadie PI, Serrano O (2017) Global patterns in mangrove soil carbon stocks and losses. Nat Clim Change 7: 523.

    Article  CAS  Google Scholar 

  • Bandaranayake WM (1998) Traditional and medicinal uses of mangroves. Mangroves Salt Marshes 2: 133–148.

    Article  Google Scholar 

  • Bandaranayake WM (2002) Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetl Ecol Manage 10: 421–452.

    Google Scholar 

  • Benner R, Hatcher PG, Hedges JI (1990) Early diagenesis of mangrove leaves in a tropical estuary; bulk chemical characterization using solid-state (super 13) C NMR and elemental analyses. Geochim Cosmochim Acta 54 (7): 2003–2013.

    Article  CAS  Google Scholar 

  • Bird ECF, Barson MM (1977) Measurement of physiographic changes on mangrove-fringed estuaries coastlines. Mar Res Indonesia 18: 73–80.

    Article  Google Scholar 

  • Cebrain J (2002) Variability and control of carbon consumption, export, and accumulation in marine communities. Limnol Ocean 47: 11–22.

    Article  Google Scholar 

  • Chale FMM (1993) Degradation of mangrove leaf litter under aerobic conditions. Hydrobiologia 257 (3): 177–183.

    Article  CAS  Google Scholar 

  • Chaudhuri AB, Choudhury A (1994) Mangroves of the Sundarbans Vol. I: India. IUCN, Bangkok, Thailand, 247 pp.

    Google Scholar 

  • Costanza R, D’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Linnberg K, Naeema S, O’Neill RV, Parvelo J, Raskin RG, Sutton P, Van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.

    Google Scholar 

  • Dam Roy S, Krishnan P (2005) Mangrove stands of Andaman vis-à-vis tsunami. Curr Sci 89: 1800–1804.

    Google Scholar 

  • Danielsen F, Sorensen MK, Olwig MF, Selvam V, Parish F, Burgess ND, Hiralshi T, Karunagaran VM, Rasmussen MS, Hansen LB, Quarto A, Suryadiputra N (2005) The Asian Tsunami: a protective role for coastal vegetation. Science 310: 643.

    Article  CAS  PubMed  Google Scholar 

  • Das, Saudamini (2004) Mangroves: A natural defense against cyclones: An investigation from Orissa, India. SANDEE Policy Brief, No. 24–07.

    Google Scholar 

  • Das SK, Thatoi H (2020) Mangrove plant mediated green synthesis of nanoparticles and their pharmaceutical applications: an overview In: Patra JK, Mishra RR, Thatoi H (eds.) Biotechnological Utilization of Mangrove Resources Academic Press—an imprint of Elsevier. Pp. 355–369.

    Google Scholar 

  • Dittmar T, Hertkorn N, Kattner G, Lara RJ (2006) Mangroves, a major source of dissolved organic carbon to the oceans. Global Biogeochem Cycles 20: 1 GB101210, doi: https://doi.org/10.1029/2005GB002570.

    Article  CAS  Google Scholar 

  • Dixon JA (1989) The value of mangrove ecosystems. Tropical Coastal Area Management Newsletter 4: 5–8.

    Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4: 293–297.

    Article  CAS  Google Scholar 

  • Duarte CM, Borum J, Short FT, Walker DI (2005) Seagrass Ecosystems: Their Global Status and Prospects. In: Polunin NVC (ed) Aquatic Ecosystems: Trends and Global Prospects, Cambridge Univ. Press.

    Google Scholar 

  • Duke NC (1992) Mangrove floristics and biogeography. In: Robertson AI, Alongi DM (eds.) Coastal and Estuarine Studies: Tropical Mangrove Ecosystems. American Geophysical Union, Washington DC, USA: 63–100.

    Google Scholar 

  • Duke NC (2017) Mangrove Floristics and Biogeography Revisited: Further Deductions from Biodiversity Hot Spots, Ancestral Discontinuities, and Common Evolutionary Processes Chapter 2 V.H. Rivera-Monroy et al. (eds.), Mangrove Ecosystems: A Global Biogeographic Perspective, Springer International Publishing AG pp. 17–53. https://doi.org/10.1007/978-3-319-62206-4_2.

  • Duke NC, Ball MC, Ellison JC (1998) Factors influencing biodiversity and distributional gradients in mangroves. Glob Ecol Biogeogr Lett 7: 27–47.

    Google Scholar 

  • Duke NC, Meynecke J-O, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Field CD, Koedam N, Lee SY, Marchand C, Nordhaus I, Dahdouh-Guebas F (2007) A world without mangroves? Science 317: 41–42.

    Google Scholar 

  • Ellison AM (2008) Managing mangroves with benthic biodiversity in mind: moving beyond roving banditry. J Sea Res 59: 2–15.

    Article  Google Scholar 

  • Ewel, K, Twilley R, Ong J (1998) Different kinds of mangrove forests provide different goods and services. Glob Ecol Biogeogr Lett 7: 83–94.

    Article  Google Scholar 

  • Fujimoto K (2000) Below-ground carbon sequestration of mangrove forests in the Asia-Pacific region. Proceedings of Asia-Pacific Cooperation on Research for Conservation of Mangroves, Okinawa, Japan, pp. 87–96.

    Google Scholar 

  • Furukawa K, Wolanski E, Mueller H (1997) Currents and sediment transport in mangrove forests. Estuar Coast Shelf Sci 44 (3): 301–310.

    Article  CAS  Google Scholar 

  • Gajula H, Kumar V, Vijendra PD, Rajashekar J, Sannabommaji T, Basappa G (2020) Secondary metabolites from mangrove plants and their biological activities. In: Biotechnological Utilization of Mangrove Resources (Eds. J.K. Patra, R.R. Mishra & H. Thatoi). Academic Press—an imprint of Elsevier. pp. 117–134.

    Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masekand J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol Biogeogr 20: 154–159.

    Article  Google Scholar 

  • Gnanadesigan M, Anand M, Ravikumar S, Maruthupandy M, Syed Ali M, Vijayakumar V, et al., (2012) Antibacterial potential of biosynthesized silver nanoparticles using Avicennia marina mangrove plant. Appl Nanosci 2: 143–147.

    Article  CAS  Google Scholar 

  • Harada K, Imamura F, Hiraishi T (2002) Experimental study on the effect in reducing Tsunami by the coastal permeable structures. Final Proc. Int. Offshore Polar Eng. Conf., USA, pp. 652–658.

    Google Scholar 

  • Hiraishi T, Harada K (2003) Green belt Tsunami Prevention in South-Pacific Region. Greenbelt tsunami prevention in South Pacific region. Report of the port and airport research institute 42: 1–23.

    Google Scholar 

  • Hemminga MA, Gwada P, Slim FJ, De Koeyer P, Kazungu J (1995) Leaf production and nutrient contents of the seagrass Thalassodendron ciliatum in the proximity of a mangrove forest (Gazi Bay, Kenya). Aquat Bot 50 (2): 159–170.

    Article  Google Scholar 

  • Jardine SL, Siikamaki JV (2014) A global predictive model of carbon in mangrove soils. Environ Res Lett 9: 104013.

    Article  CAS  Google Scholar 

  • Kaly UL, Eugelink G, Robertson AI (1997) Soil conditions in damaged North Queensland mangroves. Estuaries 20(2): 291–300.

    Article  CAS  Google Scholar 

  • Kathiresan K (1995) Studies on tea from mangrove leaves. Environ Ecol 13(2): 321–323

    Google Scholar 

  • Kathiresan K (2000) A review of studies on Pichavaram mangrove, southeast India. Hydrobiologia 430: 185–205.

    Article  Google Scholar 

  • Kathiresan K (2003) How do mangrove forests induce sedimentation?. Revista de Biol Trop 51(2): 355–360.

    CAS  Google Scholar 

  • Kathiresan K (2010) Importance of mangrove forests of India. J Coast Environ 1(1): 11–26.

    Google Scholar 

  • Kathiresan K (2015) Bioprospecting potential of mangrove resources. In: Kathiresan K, Ajmal Khan S (eds.) International Training Course on ‘Mangrove Biodiversity and Ecosystems’Course Manual. Annamalai University (Centre of Advanced Study in Marine Biology), Parangipettai, India, 753 pp.

    Google Scholar 

  • Kathiresan K (2018) Mangrove Forests of India. Curr Sci 114: 976–981.

    Article  Google Scholar 

  • Kathiresan K (2020) Bioprospecting potential of mangrove resources. In: Patra JK, Mishra RR, Thatoi H (eds.) Biotechnological Utilization of Mangrove Resources. Academic Press—an imprint of Elsevier. Pp.225–242.

    Google Scholar 

  • Kathiresan K, Ravindran VS, Muruganandham A (2006a) Mangrove extracts prevent the blood coagulate. Indian J Biotechnol 5: 252–254.

    Google Scholar 

  • Kathiresan K, Sithranga BN, Kavitha S (2006b) Coastal vegetation an under explored source of anticancer drugs. Indian J Nat Prod Rad 5(2): 115–119.

    Google Scholar 

  • Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40: 81–251.

    Article  Google Scholar 

  • Kathiresan K, Pandian M (1991) Effect of UV on quality of black tea from Ceriops decandra. Sci Cult 57 (3&4): 93–95.

    Google Scholar 

  • Kathiresan K, Pandian M (1993) Effect of UV on black tea constituents of mangrove leaves. Sci Cult 59 (7–10): 61–63.

    Google Scholar 

  • Kathiresan K, Qasim SZ (2005) Biodiversity of Mangrove Ecosystems. Hindustan Publishing Corporation, New Delhi, 251 pp.

    Google Scholar 

  • Kathiresan K, Ravikumar S (2010) Marine pharmacology: an overview. Mar Pharmacol 1: 1–37.

    Google Scholar 

  • Kathiresan K, Rajendran N (2002) Fishery resources and economic gain in three mangrove areas on the southeast coast of India. Fish Manage Ecol 49(5): 277–283.

    Article  Google Scholar 

  • Kathiresan K, Rajendran N (2005) Coastal mangrove forests mitigated tsunami. Estuar coast Shelf Sci 65: 601–606.

    Article  Google Scholar 

  • Kathiresan K, Sithrangaboopathy N (2008) Temperature effect on chemical induced carcinogenesis in hamster cheek pouch. Environ Toxic Pharmacol 26(2): 147–149.

    Article  CAS  Google Scholar 

  • Kathiresan K, Anburaj R, Gomathi V, Saravanakumar K (2013a) Carbon sequestration potential of Rhizophora mucronata and Avicennia marina as influenced by age, season, growth and sediment characteristics in southeast coast of India. J Coastal Conserv 17: 397–408.

    Article  Google Scholar 

  • Kathiresan K, Gomathi V, Anburaj R, Saravanakumar K (2014) Impact of mangrove vegetation on seasonal carbon burial and other sediment characteristics in the Vellar-Coleroon estuary, India. J For Res 25: 787–794.

    Article  CAS  Google Scholar 

  • Kathiresan K, Nabeel MA, Gayathridevi M, Asmathunisha N, Gopalakrishnan A (2013b) Synthesis of silver nanoparticles by coastal plant Prosopis chilensis (L.) and their efficacy in controlling vibriosis in shrimp Penaeus monodon. Appl Nanosci 3: 65–73.

    Article  CAS  Google Scholar 

  • Kauffman JB, Bhomia RK (2017) Ecosystem carbon stocks of mangroves across broad environmental gradients in West Central Africa: Global and regional comparisons. PLoS ONE 12, 30187749.

    Article  CAS  Google Scholar 

  • Kauffman JB, Adame MF, Arifanti VB, Schile-Beers LM, Bernardino AF, Bhomia RK, Donato DC, Feller IC, Ferreira TO, Jesus Garcia MC, MacKenzie RA, Megonigal JP, Murdiyarso D, Simpson L, Hernandez Trejo H (2020). Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecol Monogr e01405. https://doi.org/10.1002/ecm.1405.

  • Kjefve B (1990) Manual for investigation of hydrological processes in mangrove ecosystems. UNESCO/UNDP Regional Project, 79 pp.

    Google Scholar 

  • Kjerfve B, Macintosh DJ (1997) In: Kjerfve B, Lacerda LD, Diop, EHM (eds.) Mangrove Ecosystem Studies in Latin America and Africa. UNESCO, Paris, pp. 1–7.

    Google Scholar 

  • Krishnamurthy K (1990) The apiary of mangroves. In: Whigham DF, Dykyjoya D, Hejny S, (eds.) Wetland Ecology and management: Case studies pp. 135–140. Kluwer Academic press, Netherlands.

    Chapter  Google Scholar 

  • Lacerda LD (1998) Trace metals biogeochemistry and diffuse pollution in mangrove ecosystems. ISME Mangrove Ecosystems Occasional Papers 2: 1–61.

    Google Scholar 

  • Lee HL, Seleena P, Winn Z (1990) Bacillus thuringiensis serotype H-14 isolated from mangrove swamp soil in Malaysia. Mosquito Borne Diseases Bulletin 7(4): 134–135.

    Google Scholar 

  • Li W, Jiang Z, Shen L, Pedpradab P, Bruhn T, Wu J, et al. (2015) Antiviral limonoids including khayanolides from the Trang mangrove plant Xylocarpus moluccensis. J Nat Prod 78 (7): 1570–1578.

    Article  CAS  PubMed  Google Scholar 

  • Lucy E (2006) Counting mangrove ecosystems as economic components of Asia’s coastal infrastructure. Proceedings of International Conference and Exhibition on Mangroves of Indian and Western Pacific Oceans (ICEMAN 2006), Aug. 21–24, 2006 Kuala Lumpur. Pp. 1–14

    Google Scholar 

  • Lugo AE, Snedaker SC (1974) The ecology of mangroves. Ann Rev Ecol Syst 5 : 39–64.

    Article  Google Scholar 

  • Macreadie PI, Anton A, Raven JA, Beaumont N, Connolly RM, Friess DA, Kelleway JJ, Kennedy H, Kuwae T, Lavery PS, Lovelock CE, Smale DA, Apostolaki ET, Atwood TB, Baldock J, Bianchi TS, Chmura GL, Eyre BD, Fourqurean JW, Hall-Spencer JM, Huxham M, Hendriks IE, Krause-Jensen D, Laffoley D, Luisetti T, Marbà N, Masque P, McGlathery KJ, Megonigal JP, Murdiyarso D, Russell BD, Santos R, Serrano O, Silliman BR, Watanabe K, Duarte CM, 2019. The future of Blue Carbon science. Nat Commun 10: 3998. doi: https://doi.org/10.1038/s41467-019-11693-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall N (1994) Mangrove conservation in relation to overall environmental considerations. Hydrobiologia 285 (1–3): 303–309.

    Article  Google Scholar 

  • Massel SR, Furukawa K, Brinkman RM (1999) Surface wave propagation in mangrove forests. Fluid Dyn Res 24 (4): 219–249.

    Article  Google Scholar 

  • Mazda Y, Magi M, Kogo M, Hong PN (1997) Mangrove on coastal protection from waves in the Tong King Delta, Vietnam. Mangr Salt Marsh 1: 127–135.

    Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S, Salm R, Bjork M, Duarte M, Lovelock CE, Schlesinger HW, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Ecol Environ 9 (10): 552–560.

    Article  Google Scholar 

  • Medeiros CQ, Kjerfve B (1993) Hydrology of a tropical estuarine system: Itamaraca, Brazil. Estuar Coast Shelf Sci 36: 495–515.

    Article  Google Scholar 

  • Moorthy P, Kathiresan K (1997a) Photosynthetic pigments in tropical mangroves: Impacts of seasonal flux on UV-B radiation and other environmental attributes. Bot Mar 40: 341–349.

    Article  CAS  Google Scholar 

  • Moorthy P, Kathiresan K (1997b) Influence of UV-B radiation on photosynthetic and biochemical characteristics of a mangrove Rhizophora apiculata Blume. Photosynthetica 34(3): 465–471.

    Article  CAS  Google Scholar 

  • Nabeel MA, Kathiresan K, Manivannan S (2010) Antidiabetic activity of the mangrove species Ceriops decandra in alloxan-induced diabetic rate. J Diabetes 2: 97–103.

    Article  PubMed  Google Scholar 

  • Ong JE (1993) Mangroves—a carbon source and sink. Chemosphere 27: 1097–1107.

    Article  Google Scholar 

  • Ong JE, Gong WK, Clough BF (1995) Structure and productivity of a 20-year-old stand of Rhizophora apiculata Bl. mangrove forest. J Biogeogr 22: 417–424.

    Article  Google Scholar 

  • Ouyang X, Lee SY (2020) Improved estimates on global carbon stock and carbon pools in tidal wetlands. Nat Commun 11: 317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelayo M, Losada IJ, Torres-Ortega S, Narayan S, Beck MW (2020) The global flood protection benefits of mangroves. Sci Rep 10: 1–1.

    CAS  Google Scholar 

  • Perez A, Libardoni BG, Sanders CJ (2018) Factors influencing organic carbon accumulation in mangrove ecosystems. Biol Lett 14: 20180237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Premanathan M, Chandra K, Bajpai SK, Kathiresan K (1992) A survey of some Indian marine plants of antiviral activity. Bot Mar 35: 321–324.

    Google Scholar 

  • Premanathan M, Kathiresan K, Chandra K, Bajpai SK (1993) Antiviral activity of marine plants against New castle disease virus. Trop Biomed 10: 31–33.

    Google Scholar 

  • Premanathan M, Kathiresan K, Chandra K (1994a) Antiviral activity of marine and coastal plants from India. Int J Pharmacogn 32: 330–336.

    Article  Google Scholar 

  • Premanathan M, Kathiresan K, Chandra K (1994b) In vitro anti-vaccinia virus activity of some marine plants. Indian J Med Res 99: 236–238.

    CAS  PubMed  Google Scholar 

  • Premanathan M, Kathiresan K, Chandra K (1995) Antiviral evaluation of some marine plants against Semliki forest virus. Int J Pharmacogn 33 (1): 75–77.

    Article  Google Scholar 

  • Premanathan M, Nakashima H, Kathiresan K, Rajendran N, Yamamoto N (1996) In vitro anti human immunodeficiency virus activity of mangrove plants. Indian J Med Res 130: 276–279.

    Google Scholar 

  • Premanathan M, Arakaki R, Izumi H, Kathiresan K, Nakano M, Yamamoto N (1999) Antiviral properties of a mangrove plant, Rhizophora apiculata Blume, against human immunodeficiency virus. Antivir Res 44 (2): 113–122.

    Article  CAS  PubMed  Google Scholar 

  • Primavera JH (1991) Marine shrimp culture: Principles and Practices 23: 701–728.

    Google Scholar 

  • Qasim SZ (1998) Mangroves, In: Glimpses of the Indian Ocean, (University Press, Hyderabad), pp 123–129.

    Google Scholar 

  • Rajendran N (1997) Studies on mangrove—associated prawn seed resources of the Pichavaram, Southeast coast of India. Ph.D thesis. Annamalai University, India.

    Google Scholar 

  • Rajendran N, Kathiresan K (1999) Biochemical changes in decomposing leaves of mangroves. Chem Ecol 17: 91–102.

    Article  Google Scholar 

  • Ramachandran S, Anitha S, Balamurugan V, Dharanirajan K, Vendhan KE, Divien MIP, Senthil Vel A, Sjjahad Hussain I, Udayaraj A (2005) Ecological impact of tsunami on Nicobar Islands (Camorta, Katchal, Nancowry and Trinkat). Curr Sci 89: 195–200.

    Google Scholar 

  • Ray R, Jana TK (2017) Carbon sequestration by mangrove forest: One approach for managing carbon dioxide emission from coal-based power plant. Atmospheric environment 171: 149–154.

    Article  CAS  Google Scholar 

  • Ravikiran T, Anand S, Ramachandregowda S, Kariyappa AS, Dundaiah B, Gopinath MM (2020) Neuroprotective effects of mangrove plants. In: Patra JK, Mishra RR, Thatoi H (eds.) Biotechnological Utilization of Mangrove. Resources Academic Press—an imprint of Elsevier. pp. 261–273.

    Google Scholar 

  • Ren JL, Zou XP, Li WS, Shen L, Wu J (2018). Limonoids containing a C1-O-C29 moiety: isolation, structural modification and antiviral activity. Mar Drugs 16(11): 434.

    Article  CAS  PubMed Central  Google Scholar 

  • Ridd PV, Sam R (1996) Profiling groundwater salt concentrations in mangrove swamps and tropical salt flats. Estuar Coast Shelf Sci 43(5): 627–635.

    Article  Google Scholar 

  • Robertson AI, Alongi DM (1995) Role of riverine mangrove forests in organic carbon export to the tropical coastal ocean; a preliminary mass balance for the Fly Delta (Papua New Guinea). Geo-Marine Letters 15(3–4): 134–139.

    Article  Google Scholar 

  • Sakagami H, Kasdhimata M, Toguchi M, Satoh K, Odanaka Y, Ida Y, et al. (1998) Radical modulation activity of lignins from a mangrove plant Ceriops decandra (Griff.) Ding. Hou. In Vivo 12: 327–332.

    CAS  PubMed  Google Scholar 

  • Sahu SK, Kathiresan K, Singh R, Senthilraja P (2012) Molecular docking analyses of Avicennia marina derived phytochemicals against white spot syndrome virus (WSSV) envelope protein-VP28. Bioinformation 8 (18): 897–900.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanders CJ, Mather DT, Tait DR, Williams D, Holloway C, Sippo JZ, Santos IR (2016) Are global mangrove carbon stocks driven by rainfall? J Geophys Res Biogeosci 121: 2600–2609.

    Article  Google Scholar 

  • Sanderman J, Hengl T, Fiske G, Solvik K, Adame MF, Benson L, et al. (2018) A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ Res Lett 13: 055002.

    Article  CAS  Google Scholar 

  • Saravanakumar K, Sunil KS, Kathiresan K (2012) In-silico studies on fungal metabolites against breast cancer protein (BRCA1). Asian J Trop Biomed B488 (3): 1–3.

    Google Scholar 

  • Senthilraja P, Kathiresan K (2011) Computational selection of compounds derived from mangrove ecosystem for anti-cervical cancer activity. J Recent Sci Res 2 (4): 93–98.

    Google Scholar 

  • Senthilraja P, Kathiresan K, Saravanakumar K (2011) Comparative analysis of bioethanol production by different strains of immobilized marine yeast. J Yeast Fungal Res 2 (8): 113–116.

    CAS  Google Scholar 

  • Senthilraja P, Sahu SK, Kathiresan K (2012) Potential of mangrove derived compounds against dihydrofolate reductase: an in-silico docking study. J Comput Biol Bioinforma Res 4: 23–27.

    CAS  Google Scholar 

  • Singh CR, Kathiresan K (2013) Anticancer efficiency of root tissue and root callus of Acanthus ilicifolius L., on Benzo pyrene induced pulmonary carcinoma in Musmusculaus. World J Pharm Pharm Sci 2: 5271–5283.

    Google Scholar 

  • Singh CR, Kathiresan K (2014) In vitro cytotoxicity effect of mangroves against non-small cell lung carcinoma A549 and NCI-H522. World J Pharm Pharm Sci 3: 1067–1078.

    Google Scholar 

  • Boopathy NS, Kathiresan K (2010) Effect of mangrove species Ceriops decandra on hair loss in the hamster rats induced with oral cancer. Zool Surv India pp. 447–454.

    Google Scholar 

  • Boopathy NS, Kathiresan K, Manivannan S, Jeon YJ (2011a) Effect of mangrove tea extract from Ceriops decandra (Griff.) Ding Hou. on salivary bacterial flora of DMBA induced Hamster buccal pouch carcinoma. Indian J Microbiol 51(3): 338–344.

    Article  Google Scholar 

  • Boopathy NS, Kathiresan K, Jeon YJ (2011b) Effect of mangrove tea extract from Ceriops decandra (Griff.) on haematology and biochemical changes in DMBA induced Hamster buccal pouch carcinogenesis. J Environ Toxicol Pharmacol 32: 193–200.

    Article  CAS  Google Scholar 

  • Siddiqi NA (1997) Management of Resources in the Sunderbans Mangroves of Bangladesh. International News letter of coastal Management—Intercoast Network. Special edition 1: 22–23.

    Google Scholar 

  • Silva CAR, Lacerda LD, Rezende CE (1990) Heavy metal reservoirs in a red mangrove forest. Biotropica 22: 339–345.

    Article  Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) World Atlas of Mangroves. Earthscan, London, Washington DC. Pp. 319.

    Book  Google Scholar 

  • Steinke TD, Barnabas AD, Somaru R (1990) Structural changes and associated microbial activity accompanying decomposition of mangrove leaves in Mgeni estuary (South Africa). South Afr J Bot 56(1): 39–48.

    Article  Google Scholar 

  • Steinke TD, Holland AJ, Singh Y (1993) Leaching losses during decomposition of mangrove leaf litter. South Afr J Bot 59: 21–25.

    Article  CAS  Google Scholar 

  • Tomlinson PB (2016) The botany of mangroves. Second Edition. Cambridge University Press, Cambridge, p 418.

    Book  Google Scholar 

  • Thangam TS, Kathiresan K (1988) Toxic effect of mangrove plant extracts on mosquito larvae Anopheles stephensi L. Curr Sci 47 (16): 914–915.

    Google Scholar 

  • Thangam TS, Kathiresan K (1989) Larvicidal effect of marine plant extracts on mosquito Culex tritaeniorhynchus. J Mar Biol Assoc India 31 (1–2): 306–307.

    Google Scholar 

  • Thangam T, Kathiresan K (1991) Mosquito larvicidal activity of marine plants with synthetic insecticides. Bot Mar 34: 537–539.

    Article  CAS  Google Scholar 

  • Thangam TS, Kathiresan K (1992a) Smoke repellency and killing effect of marine plants against Culex quinquefasciatus. Trop Biomed 9: 35–38.

    Google Scholar 

  • Thangam TS, Kathiresan K (1992b) Mosquito larvicidal activity of mangrove plant extract against Aedesa egypti. Int Pest Control 34 (4): 116–119.

    Google Scholar 

  • Thangam TS, Kathiresan K (1993a) Mosquito larvicidal activity of mangrove plants extract against Aedes aegypti and Culex quinquefasciatus. Int Pest Control 35: 94–95.

    Google Scholar 

  • Thangam TS, Kathiresan K (1993b) Repellency of marine plant extracts against Aedes aegypti. Int J Pharmacogn 31: 321–323.

    Article  Google Scholar 

  • Thangam TS, Kathiresan K (1994) Mosquito larvicidal activity of Rhizophora apiculata. Int J Pharmacogn 32: 33–36.

    Article  Google Scholar 

  • Thangam TS, Kathiresan K (1997) Mosquito larvicidal activity of mangrove plant extracts and synergistic activity of R. apiculata with pyrethrum against Culex quinquefasciatus. Int J Pharmacogn 35 (1): 69–71.

    Article  Google Scholar 

  • Thomas W, Mark S (2018) Technical report on Mangrove Restoration potential IUCN, University of Cambridge, the Nature Conservancy, p. 33.

    Google Scholar 

  • Tsabang N, Ngah N, Estella FT, Agbor GA (2016) Herbal medicine and treatment of diabetes in Africa: case study in Cameroon. Diabetes Case Rep 1 (112): 2.

    Google Scholar 

  • Twilley RR, Chen R, Hargis T (1992) Carbon sinks in mangroves and their implication to carbon budget of tropical ecosystems. Water Air and Soil Pollut 64: 265–288.

    Article  CAS  Google Scholar 

  • Vannucci M (2002) Indo-west pacific mangroves. In: “Mangrove ecosystems” (Lacerda L.D ed.) pp. 123-215. Springer-Verlag, Berlin.

    Google Scholar 

  • Veera Ravi A, Kathiresan K (1990) Seasonal variations in gallotannin from mangroves. Indian J Mar Sci 19: 224–225.

    Google Scholar 

  • Wafar S, Untawale AG, Wafar M (1997) Litter fall and energy flux in a mangrove ecosystem. Estuar Coast Shelf Sci 44: 111–124.

    Article  Google Scholar 

  • Wolanski E (1995) Transport of sediment in mangrove swamps. Hydrobiologia 295: 31–42.

    Article  Google Scholar 

  • Wolanski E, Mazda Y, Ridd P (1992) Mangrove hydrodynamics. In: Robertson AI, Alongi DM (eds.) Coastal and Estuarine Studies: Tropical Mangrove Ecosystems. American Geophysical Union, Washington, DC., USA, pp. 43–62.

    Chapter  Google Scholar 

  • Wong YS, Lam CY, Che SH, Li XR, Tam NFY (1995) Effect of wastewater discharge on nutrient contamination of mangrove soil and plants. Hydrobiologia 295: 243–254.

    Article  CAS  Google Scholar 

  • Woodroffe C (1992) Mangrove sediments and geomorphology. In : Robertson AI, Alongi DM (eds.) Coastal and Estuarine Studies: Tropical Mangrove Ecosystem. American Geophysical Union, Washington DC., USA, pp. 7–41.

    Chapter  Google Scholar 

  • World Disasters Report (2002) Focus on Reducing Risk. Geneva: IFRC.

    Google Scholar 

  • Zhang Q, Satyanandamurty T, Shen L, Wu J (2017) Krishnolides A-D: New 2-Ketokhayanolides from the Krishna mangrove, Xylocarpus moluccensis. Mar Drugs 15 (11): 333.

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kathiresan, K. (2021). Mangroves: Types and Importance. In: Rastogi, R.P., Phulwaria, M., Gupta, D.K. (eds) Mangroves: Ecology, Biodiversity and Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-2494-0_1

Download citation

Publish with us

Policies and ethics