Skip to main content
Log in

Microbial Bioremediation Techniques for Polycyclic Aromatic Hydrocarbon (PAHs)—a Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This review summarizes current knowledge of the polycyclic aromatic hydrocarbons (PAHs) contaminant in the environment and the importance of using benzo(a)pyrene in this study. It highlights the removal techniques in eliminating the PAHs and their limitations on the bioremediation method. The factors that affect the remediation were thoroughly explained in this paper, focusing on removing PAHs using bioremediation. The remediation methods using bacteria and fungi have emerged as the potential degrader of PAHs pollutants and are being extensively studied to evaluate the best removal conditions. The PAHs degradation pathways have also been discussed in this paper to provide insight on microbial bioremediation in reducing PAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data during this study are included from previous studies.

Code Availability

Not applicable.

References

  • Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). The role of microorganisms in bioremediation- a review. Open Journal of Environmental Biology 2(1): 038–046. http://doi.org/https://doi.org/10.17352/ojeb.000007.

  • Abatenh, E. G. (2017). Application of microorganisms in bioremediation-review. Journal of Environmental Microbiology, 1(1), 2–9.

    Google Scholar 

  • Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum. https://doi.org/10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  • Abdel-Shafy, H., & Mansour, M. (2018). Phytoremediation for the elimination of metals, pesticides, PAHs, and other pollutants from wastewater and soil. Phytobiont and Ecosystem Restitution, pp. 101–136. http://doi.org/https://doi.org/10.1007/978-981-13-1187-1_5.

  • Abo-State, M. A. M., Riad, B. Y., Bakr, A. A., & Abdel Aziz, M. F. (2017). Biodegradation of naphthalene by Bordetella avium isolated from petroleum refinery wastewater in Egypt and its pathway. Journal of Radiation Research and Applied Science. https://doi.org/10.1016/j.jrras.2017.10.001

    Article  Google Scholar 

  • Abozenadah, H., Bishop, A., Bittner, S., Lopez, O., Wiley, C., & Flatt, P. M. (2017). Consumer chemistry: how organic chemistry impacts our lives. Available at: https://wou.edu/chemistry/courses/online-chemistry-textbooks/ch105-consumer-chemistry.

  • Adeola, A. O., & Forbes, P. B. C. (2020). Advances in water treatment technologies for removal of polycyclic aromatic hydrocarbons: Existing concepts, emerging trends, and future prospects. Water Environmental Research. https://doi.org/10.1002/wer.1420.

  • Ahammed, G. J., Pal, S., Chen, S., Xia, X. J., Shi, K., Zhou, Y., & Yu, J. (2012). Role of brassinosteroids in alleviation of phenanthrene-cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. Journal of Experimental Botany, 64, 199–213.

    Article  Google Scholar 

  • Alegbeleye, O. O., Opeolu, B. O., & Jackson, V. (2016). Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa. Brazilian Journal of Microbiology, 48(2), 314–325. https://doi.org/10.1016/j.bjm.2016.07.027

    Article  CAS  Google Scholar 

  • Al-Hawash, A. B., Zhang, X., & Ma, F. (2018). Removal and biodegradation of different petroleum hydrocarbons using the filamentous fungus Aspergillus sp. RFC-1. Microbiology Open, Vol 8, Issue 1. https://doi.org/10.1002/mbo3.619.

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals–concepts and applications. Chemosphere, 91, 869–881.

    Article  CAS  Google Scholar 

  • Alias, S. (2015). Biological-chemical treatment of polycyclic aromatic hydrocarbon-contaminated soil using bacteria and zero-valent iron. Thesis.

  • Anyasi, R. O., & Atagana, H. I. (2018). Profiling of plants at petroleum contaminated site for phytoremediation. International Journal of Phytoremediation, 20(4), 352–361.

    Article  CAS  Google Scholar 

  • Arulazhagan, P., Al‑Shekri, K., Huda, Q., Godon, J. J., Basahi, J. M., & Jeyakumar, D. (2016). Biodegradation of polycyclic aromatic hydrocarbons by an acidophilic Stenotrophomonas maltophilia strain AJH1 isolated from a mineral mining site in Saudi Arabia. Extremophiles. 163–174. https://doi.org/10.1007/s00792-016-0892-0.

  • Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32:180. https://doi.org/10.1007/s11274-016-2137-x.

  • Babu, A. G., Reja, S. I., Akhtar, N., Sultana, M., Deore, P. S., & Ali, F. I. (2019). Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs): Current Practices and Outlook. In: Arora P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-13-7462-3_9.

  • Balati, A., Shahbazi, A., Amini, M. M., & Hashemi, S. H. (2015). Adsorption of polycyclic aromatic hydrocarbons from wastewater by using silica-based organic-inorganic nanohybrid material. Journal of Water Reuse and Desalination, 5(1), 50–63. https://doi.org/10.2166/wrd.2014.013

    Article  CAS  Google Scholar 

  • Bai, L., & Li, C. (2022). Investigation of Indoor Polycyclic Aromatic Hydrocarbons (PAHs) in Rural Northeast China: Pollution Characteristics, Source Analysis, and Health Assessment. Buildings, 12, 153. https://doi.org/10.3390/buildings12020153

    Article  Google Scholar 

  • Balaji, V., Arulazhagan, P., & Ebenezer, P. (2014). Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum-contaminated soil and oilseeds. Journal of Environmental Biology, 35, 521–529.

    CAS  Google Scholar 

  • Banat, I. M., Satpute, S. K., Cameotra, S. S., Patil, R. & Nyayanit, N. V. (2014). Cost-effective technologies and renewable substrates for biosurfactants production. Frontier Microbiology, 5. Article 697.

  • Bargiel, P., & Zabochnicka-Swiatek, M. (2018). Technologies of coke wastewater treatment in the frame of legislation in force. Journal Environmental Protection and Natural Resources, 29, 11–15.

    Article  Google Scholar 

  • Barman, S. R., Banerjee, P., Mukhopadhayay, A., & Das, P. (2017). Biodegradation of acenaphthene and naphthalene by Pseudomonas mendocina: Process optimization and toxicity evaluation. Journal of Environmental Chemical Engineering, 5, 4803–4812. https://doi.org/10.1016/j.jece.2017.09.012

    Article  CAS  Google Scholar 

  • Batistella, L., Silva, V., et al. (2015). Gaseous emissions from sewage sludge combustion in a moving bed combustor. Waste Management. https://doi.org/10.1016/j.wasman.2015.08.039

    Article  Google Scholar 

  • Bezza, F. A., & Chirwa, E. M. N. (2017a). The role of lipopeptide biosurfactant on microbial remediation of aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Chemical Engineering Journal., 309, 563–576.

    Article  CAS  Google Scholar 

  • Bezza, F. A., & Chirwa, E. M. N. (2017b). Pyrene biodegradation enhancement potential of lipopeptide biosurfactant produced by Paenibacillus dendritiformis CN5 strain. Journal of Hazardous Material, 321, 218–227.

    Article  CAS  Google Scholar 

  • Bhatt, P., Verma, A., Gangola, S., Bhandari, G., & Chen, S. (2021). Microbial glycoconjugates in organic pollutant bioremediation: Recent advances and applications. Microbial Cell Factories, 20, 72. https://doi.org/10.1186/s12934-021-01556-9

    Article  Google Scholar 

  • Bhattacharya, S., Das, A., Palaniswamy, M., Angayarkanni, J. (2017). Degradation of benzo[a]pyrene by Pleurotus ostreatus PO-3 in the presence of defined fungal and bacterial co-cultures. Journal of Basic Microbiology, 57(2), 95–103. https://doi.org/10.1002/jobm.201600479

  • Bisht, S., Pandey, P., Sood, A., Sharma, S., & Bisht, N. S. (2010). Biodegradation of naphthalene and anthracene by chemo-tactically active rhizobacteria of Populus deltoides. Brazilian Journal of Microbiology, 41(4), 922–930.

    Article  CAS  Google Scholar 

  • Bisht, S., Pandey, P., Kaur, G., Aggarwal, H., Sood, A., Sharma, S., & Bisht, N. S. (2014). Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. European Journal of Soil Biology, 60, 67–76.

    Article  CAS  Google Scholar 

  • Bruslind, L. (2021). Bacteria - Cell Walls. Retrieved (May 25 2021) from https://bio.libretexts.org/@go/page/10632.

  • Chaudhry, Q., Blom-Zandstra, M., Gupta, S., et al. (2005). Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environmental Science Pollution Research, 12, 34–48.

    Article  CAS  Google Scholar 

  • Chen, K., Zhu, Q., Qian, Yiguang, S., Ying, Y., Jun, C. & Martin M. F. (2013). Microcalorimetric investigation of the effect of non-ionic surfactant on biodegradation of pyrene by PAH-degrading bacteria Burkholderia cepacia. Ecotoxicology and Environmental Safety.

  • Chen, F., Tan, M., Ma, J., Zhang, S., Li, G., & Qu, J. (2016). Efficient remediation of PAH-metal co-contaminated soil using microbial-plant combination: A greenhouse study. Journal of Hazardous Material, 302, 250–261.

    Article  CAS  Google Scholar 

  • Cheruiyot, et al. (2015). An overview: Polycyclic aromatic hydrocarbon emissions from the stationary and mobile sources and in the ambient air. Aerosol and Air Quality Research.

  • Chou, P. H., Lee, C. H., Ko, F. C., Lin, Y. J., Kawanishi, M., Yagi, T., & Li, I. C. (2015). Detection of hormone-like and genotoxic activities in indoor dust from Taiwan using a battery of in vitro bioassays. Aerosol and Air Quality Research, 15, 1412–1421.

    Article  CAS  Google Scholar 

  • Decesaro, A., Machado, T. S., Cappellaro, A. C., Reinehr, C. O., Thomé, A., & Coll, L. M. (2017). Biosurfactants during in situ bioremediation: Factors that influence the production and challenges in evaluation. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-9778-7

    Article  Google Scholar 

  • De Carvalho, C. C. C. R., & Caramujo, M. J. (2018). The various roles of fatty acids. Molecules. https://doi.org/10.3390/molecules23102583

    Article  Google Scholar 

  • Deshmukh, S. P., Kale, D. P., Kar, S., Shirsath, S. R., Bhanvase, B. A., Saharan, V. K., & Sonawane, S. H. (2020). Ultrasound-assisted preparation of rGO/TiO2 nanocomposite for effective photocatalytic degradation of methylene blue under sunlight. Nano-Structures & Nano-Objects, Vol 21. https://doi.org/10.1016/j.nanoso.2019.100407

  • Deveau et al., (2018). Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiology Reviews, Vol 42, Issue 3, 335–352. https://doi.org/10.1093/femsre/fuy008.

  • Dowling, D. K., Maklakov, A. A., Friberg, U., & Hailer, F. (2009). Applying the genetic theories of ageing to the cytoplasm: Cytoplasmic genetic covariation for fitness and lifespan. Journal of Evolutionary Biology, 2(2), 818–827.

    Article  Google Scholar 

  • Dörr, T., Moynihan, P. J., & Mayer, C. (2019). Editorial: Bacterial Cell Wall Structure and Dynamics. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2019.02051

    Article  Google Scholar 

  • Dushyant, R. D., & Bharti, P. D. (2018). Mycobacterium as polycyclic aromatic hydrocarbons (PAHs) degrader, Mycobacterium - Research and Development, Wellman Ribón, IntechOpen. https://doi.org/10.5772/intechopen.73546.

  • Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2016). Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, 23, 28–36. https://doi.org/10.1016/j.ejbt.2016.07.003

    Article  Google Scholar 

  • Edokpayi, J. N., Odiyo, J. O., Popoolo, O. E., & Tsagati, T. A. M. (2016). Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in Vhembe District. Environmental Research and Public Health.

    Book  Google Scholar 

  • Edward, Yogaswara, D., Khozanah, Wulandari, I., & Falahudin, D. (2020). Determination of polycyclic aromatic hydrocarbons (PAHs) in the brackish water and sediments of citarum irrigation system, Pakis Jaya, Karawang, Indonesia. E3S Web of Conferences 147, 02002. https://doi.org/10.1051/e3sconf/202014702002.

  • Faboya, O. L., Sojinu, S. O., Oguntuase, B. J., & Sonibare, O. O. (2020). Impact of forest fires on polycyclic aromatic hydrocarbon concentrations and stable carbon isotope compositions in burnt soils from tropical forest, Nigeria. Scientific African, Vol 8. https://doi.org/10.1016/j.sciaf.2020.e00331.

  • Fasani, E., Manara, A., Martini, F., Furini, A., & DalCorso, G. (2018). The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environmental. https://doi.org/10.1111/pce.12963

    Article  Google Scholar 

  • Fathi, Z., & Ebrahimipour, G. (2018). Isolation and identification of polycyclic aromatic hydrocarbons (PAHs) degrading bacteria from Arak Petrochemical Wastewater. Journal of Microbiology, Biotechnology and Food Sciences Vol. 7, Iss. 5, 499–504. https://doi.org/10.15414/jmbfs.2018.7.5.499-504.

  • Fatone, F., Di Fabio, S., Bolzonella, D., & Cecchi, F. (2011). Fate of aromatic hydrocarbons in Italian municipal wastewater systems: An overview of wastewater treatment using conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs). Water Research, 45, 93–104. https://doi.org/10.1016/j.watres.2010.08.011

    Article  CAS  Google Scholar 

  • Fernández-Luqueño, F., López-Valdez, F., Sarabia-Castillo, C. R., García-Mayagoitia, S. & Pérez-Ríos S.R. (2017). Bioremediation of polycyclic aromatic hydrocarbons-polluted soils at laboratory and field scale: A review of the literature on plants and microorganisms. International Publishing.

  • Folwell, B. D., McGenity, T. J. & Whitby, C. (2016). Biofilm and planktonic bacterial and fungal communities transforming high-molecular-weight polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology 82.

  • Fu, W. Q., Xu, M., Sun, K., Chen, X. L., Dai, C. C. & Jia, Y. (2020) Remediation mechanism of endophytic fungus Phomopsis liquidambaris on phenanthrene in vivo. Chemosphere 243:125305

  • Fulekar, M. H. (2017). Microbial degradation of petrochemical waste-polycyclic aromatic hydrocarbons. Bioresources and Bioprocessing, 4(1), 28. https://doi.org/10.1186/s40643-017-0158-4

    Article  CAS  Google Scholar 

  • Fufă, M. O. M., Popescu, R. C., Grumezescu, A. M., & Holban, A. M. (2017). Microorganisms: new trends in environment-friendly and energy-saving water purification. Water Purification, 263–288. https://doi.org/10.1016/b978-0-12-804300-4.00007-1.

  • Gaskin, S. E., & Bentham, R. H. (2010). Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Science Total Environmental., 408, 3683–3688.

    Article  CAS  Google Scholar 

  • Gaurav, G. K., & Yadav, D. (2020). Probing the excellence of wastewater PAHs removal approaches: A critical review. Journal of Contaminant Hydrology. https://doi.org/10.1016/j.jconhyd.2020.103715

    Article  Google Scholar 

  • Gautam, R. K., Mudhoo, A., Lofrano, G., & Chattopadhyaya, M. C. (2014). Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. Journal of Environmental Chemical Engineering, 2, 239–259. https://doi.org/10.1016/j.jece.2013.12.019

    Article  CAS  Google Scholar 

  • Gharibzadeh, F., Roshanak, R. K., Nasseri, S., Esrafili, A. & Azari, A. (2016). Reuse of polycyclic aromatic hydrocarbons (PAHs) contaminated soil washing effluent by bioaugmentation/biostimulation process. Separation Purification Technology, 168, 248e256.

  • Ghosal, D., Ghosh, S., Dutta, T. K., & Ahn, Y. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A Review. Frontiers Microbiology. https//doi/https://doi.org/10.3389/fmicb.2016.01369.

  • Ghosh, I., & Mukherji, S. (2017). Substrate interaction effects during pyrene biodegradation by Pseudomonas aeruginosa RS1. Journal of Environmental Chemical Engineering, 5 (2), 1791e1800. https://doi.org/10.1016/j.jece.2017.03.016.

  • Goswami, L., Manikandan, N. A., Dolman, B., Pakshirajan, K., & Pugazhenthi, G. (2018). Biological treatment of wastewater containing a mixture of polycyclic aromatic hydrocarbons using the oleaginous bacterium Rhodococcus opacus. Journal of Cleaner Production, 196, 1282–1291. https://doi.org/10.1016/j.jclepro.2018.06.070

    Article  CAS  Google Scholar 

  • Gowthaman, S., Mafizur, R., & Sivakumar, S. (2017). Performance evaluation of wastewater treatment plant: An analysis of FOG removal efficiency. International Journal of Scientific and Engineering, 8, 2084–2089.

    Google Scholar 

  • Gudina, E. J., Teixeira, J. A. & Rodrigues, L.R. (2016). Biosurfactants produced by marine microorganisms with therapeutic applications. Marine Drugs 14.

  • Guo, J., Liu, J. H., Wang, L. Y., & Liu, H. (2015). Modification of ultrafiltration membranes with carbon nanotube buckypaper for fouling alleviation. Membrane Water Treatment, 6, 1–13. http://doi.org/https://doi.org/10.12989/mwt.2015.6.1.001.

  • Guo, M., Gong, Z., Miao, R., Su, D., Li, X., Jia, C., & Zhuang, J. (2017a). The influence of root exudates of maize and soybean on polycyclic aromatic hydrocarbons degradation and soil bacterial community structure. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2016.11.018

    Article  Google Scholar 

  • Guo, M., Gong, Z., Miao, R., Rookes, J., Cahill, D. & Zhuang J. (2017b), Microbial mechanisms controlling the rhizosphere effect of ryegrass on degradation of polycyclic aromatic hydrocarbons in an aged-contaminated agricultural soil. Soil Biology & Biochemistry.

  • Guo, Y., Wu, K., Huo, X., & Xu, X. (2011). Sources, Distribution and toxicity of polycyclic aromatic hydrocarbons. Journal of Environmental Health, 73, 22–25.

    CAS  Google Scholar 

  • Gupta, G., Kumar, V., & Pal, A. K. (2017). Microbial degradation of high molecular weight polycyclic aromatic hydrocarbons with emphasis on pyrene. Polycyclic Aromatic Compounds. https://doi.org/10.1080/10406638.2017.1293696

    Article  Google Scholar 

  • Gupte, A., Tripathi, A., Patel, H., Rudakiya, D., & Gupte, S. (2016). Bioremediation of Polycyclic Aromatic Hydrocarbon (PAHs): Perspective. Open Biotechnology Journal. https://doi.org/10.2174/1874070701610010363.

  • Haddaoui, I., Mahjoub, O., Mahjoub, B., Boujelben, A. & Bella, A. D. (2015). Occurrence and distribution of PAHs, PCBs, and chlorinated pesticides in Tunisian soil irrigated with treated wastewater. Chemosphere.

  • Hamedi, J., & Poorinmohammad, N. (2017). The Cellular Structure of Actinobacteria. In: Wink J., Mohammadipanah F., Hamedi J. (eds) Biology and Biotechnology of Actinobacteria. Springer, Cham. https://doi.org/10.1007/978-3-319-60339-1_2.

  • Hamzah, N., Kamil, N. A. F. M., Singhal, N., Padhye, L., & Swift, S. (2018). Comparison of phenanthrene removal by Aspergillus niger ATC 16404 (filamentous fungi) and Pseudomonas putida KT2442 (bacteria) in enriched nutrient-liquid medium. IOP Conf. Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/140/1/012047

  • Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2009.03.137

    Article  Google Scholar 

  • He, Y., Chi, J., & Qi, Y. (2016). Response of bacterial community structure to disappearance of phenanthrene and pyrene from sediment with different submerged macrophytes. Ecological Engineering, 91, 207–211. https://doi.org/10.1016/j.ecoleng.2016.02.024

    Article  Google Scholar 

  • Honda, M., & Suzuki, N. (2020). Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. International Journal of Environmental Research and Public Health, 17, 1363. https://doi.org/10.3390/ijerph17041363

    Article  CAS  Google Scholar 

  • Hou, L., Liu, R., Li, N., Dai, Y., & Yan, J. (2019). Study on the efficiency of phytoremediation of soils heavily polluted with PAHs in petroleum-contaminated sites by microorganisms. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-05828-1

    Article  Google Scholar 

  • Hsu, Y., Harner, T., Li, H. & Fellin, P. (2015). PAH measurements in air in the Athabasca Oil Sands Region. Environmental Science and Technology.

  • Huang, C., Wang, Y., Gong, M., Wang, W., Mu, Y., & Hu, Z. (2020). α-MnO2/Palygorskite composite as an effective catalyst for heterogeneous activation of peroxymonosulfate (PMS) for the degradation of Rhodamine B. Separation and Purification Technology, 230. https://doi.org/10.1016/j.seppur.2019.115877.

  • Huang, D., Hu, C., Zeng, G., Cheng, M., Xu, P., Gong, X., Wang, R., & Xue, W. (2016). Combination of Fenton Processes and Biotreatment for Wastewater Treatment and Soil Remediation. Science of the Total Environmental. https://doi.org/10.1016/j.scitotenv.2016.08.199.

  • Hussain, K., Hoque, R. R., Balachandran, S., Medhi, S., Idris, M. G., Rahman, M., & Hussain, F. L. (2018a). Monitoring and risk analysis of PAHs in the environment. In: Hussain C. (eds) Handbook of Environmental Material Management. Springer Cham.

  • Hussain, I., Aleti, G., Naidu, R., et al. (2018b). Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: A review. Science Total Environment, 628–629, 1582–1599.

    Article  Google Scholar 

  • Hussain, et al. (2017). Rhizoremediation of petroleum hydrocarbon-contaminated soils: Improvement opportunities and field applications. Environmental and Experimental Botany. https://doi.org/10.1016/j.envexpbot.2017.12.016

    Article  Google Scholar 

  • Hyde, K. D., Xu, J., Rapior, S., et al. (2019). The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 97, 1–136. https://doi.org/10.1007/s13225-019-00430-9

    Article  Google Scholar 

  • Ibrahim, M., Makky, E. A., Azmi, N. S., & Ismail, J. (2018). Optimization parameters for Mycobacteria confluentis biodegradation of PAHs. MATEC Web of Conf. https://doi.org/10.1051/matecconf/201815006035

    Article  Google Scholar 

  • Iglesias, Olalla, Sanroman, M. Angeles, Pazos & Marta. (2014). Surfactant-enhanced solubilization and simultaneous degradation of phenanthrene in marine sediment by electro-Fenton treatment. Industrial and Engineering Chemistry Research, 53 (8).

  • Ismail, N. A., Hamzah, N., Kasmuri, N., Jaafar, J., Ali, M. F., Khalil, K. A., & Singhal, N. (2020). Optimization and interaction analysis of bacterial and fungal growth in the presence of benzo(a)pyrene in wastewater. IOP Conf. Series: Earth and Environmental Science. https://doi.org/10.1088/1755-315/616/1/012067.

  • IARC (2021). List of classifications, Volumes 1–119. http://monographs.iarc.fr/ENG/Classification/latest_classif.php.

  • Jafari, A., Mahvi, A. H., Nasseri, S., Rashidi, A., Nabizadeh, R., & Rezaee, R. (2015). Ultra-filtration of natural organic matter from water by vertically aligned carbon nanotube membrane. Journal of Environmental Health Science Engineering, 13, 51. https://doi.org/10.1186/s40201-015-0207-x

    Article  CAS  Google Scholar 

  • Jalali, R., Ghafourian, H., Asef, Y., Davarpanah, S., & Sepehr, S. (2002). Removal and recovery of lead using nonliving biomass of marine algae. Journal of Hazardous Materials, 92(3), 253–262. https://doi.org/10.1016/S0304-3894(02)00021-3

    Article  CAS  Google Scholar 

  • Jamal, M. T. (2018). Application of hydrocarbon-degrading halophilic bacterial strains as an indicator to locate crude oil reservoirs in Atlantis II deep in the Red Sea. International Journal of Advanced Research in Biological Science, 5(12): 30–36. https://doi.org/10.22192/ijarbs.2018.05.12.005.

  • Jamal, M. T., & Pugazhendi, A. (2018). Degradation of petroleum hydrocarbons and treatment of refinery wastewater under saline condition by a halophilic bacterial consortium enriched from marine environment (Red Sea), Jeddah, Saudi Arabia. 3 Biotech. https://doi.org/10.1007/s13205-018-1296-x.

  • Jambon, I., Thijs, S., Weyens, N., & Vangronsveld, J. (2018). Harnessing plant-bacteria-fungi interactions to improve plant growth and degradation of organic pollutants. Journal of Plant Interaction, 13(1), 119–130. https://doi.org/10.1080/17429145.2018.1441450

    Article  CAS  Google Scholar 

  • Jian, B. T. P., Mustafa, M. R., Isa, M. H., Yaqub, A., & Chia, H. Y. (2020). Study of the water quality index and polycyclic aromatic hydrocarbon for a river receiving treated landfill leachate. Water. https://doi.org/10.3390/w12102877.

  • Jiang, Y., Yves, U. J., Sun, H., Hu, X., Zhan, H. & Wu, Y. (2016). Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China. Ecotoxicology Environmental Safety 126, 154e162. https://doi.org/10.1016/j.ecoenv.2015.12.037.

  • Kadri, T., Rouissi, T., Brar, S. K., Cledon, M., Sarma, S., & Verma, M. (2016). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences. https://doi.org/10.1016/j.jes.2016.08.023

    Article  Google Scholar 

  • Khatoon, H., Rai, J. P. N., & Jillani, A. (2021). Chapter 7 - Role of fungi in bioremediation of contaminated soil. Fungi Bio-Prospects in Sustainable Agriculture. Environment and Nano-technology, Academic Press, Pp 121–156. https://doi.org/10.1016/B978-0-12-821925-6.00007-1.

  • Khodaverdiloo, H., Han, F. X., Taghlidabad, R. H., Karimi, A., Moradi, N., & Kazery, J. A. (2020). Potentially toxic element contamination of arid and semi-arid soils and its phytoremediation. Arid Land Research and Management. https://doi.org/10.1080/15324982.2020.1746707

    Article  Google Scholar 

  • Kim, S. K., & Chae, D. H. (2016). Seasonal variation in diffusive exchange of polycyclic aromatic hydrocarbons across the air-seawater interface in coastal urban area. Marine Pollution Bulletin, 109, 221–229.

    Article  CAS  Google Scholar 

  • Korenak, J., Basu, S., Balakrishnan, M., Hélix-Nielsen, & C., Petrinic, I. (2017). Forward osmosis in wastewater treatment processes. Acta Chimica Slovenica. https://doi.org/10.17344/acsi.2016.2852.

  • Kronenberg, M., Trably, E., Bernet, N., & Patureau, D. (2017). Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse. Environmental Pollution. https://doi.org/10.1016/j.envpol.2017.08.048

    Article  Google Scholar 

  • Kumari, S., Kumar Regar, R., & Manickam, N. (2018). Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresource Technology. https://doi.org/10.1016/j.biortech.2018.01.075.

  • Kumar, V., Shahi, S. K., & Singh, S. (2018). Bioremediation: An eco-sustainable approach for restoration of contaminated sites. Microbial Bioprospecting for Sustainable Development. https://doi.org/10.1007/978-981-13-0053-0_6

    Article  Google Scholar 

  • Kwon, E. E., Lee, T., Ok, Y. S., Tsang, D. C. W., Park, C. & Lee, J. (2018). Effects of calcium carbonate on pyrolysis of sewage sludge. Energy.

  • Låg, M., Ovrevik, J., Refsnes, M., & Holme, J. A. (2020). Potential role of polycyclic aromatic hydrocarbons in air pollution-induced non-malignant respiratory diseases. Respiratory Research. https://doi.org/10.1186/s12931-020-01563-1

    Article  Google Scholar 

  • Lamichhane, S. (2017). Improve the efficiency of constructed wetlands in removing polycyclic aromatic hydrocarbons (PAH) from stormwater. Thesis.

  • Lamichhane, S., Bal Krishna, K. C., & Sarukkalige, R. (2017). Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2017.05.037

    Article  Google Scholar 

  • Lasota, J., & Błońska, E. (2018). Polycyclic aromatic hydrocarbons content in contaminated forest soils with different humus types. Water Air & Soil Pollution. https://doi.org/10.1007/s11270-018-3857-3

    Article  Google Scholar 

  • Lawal, A. T. (2017). Polycyclic aromatic hydrocarbons. A review. Cogent Environmental Science. https://doi.org/10.1080/23311843.2017.1339841.

  • Lee, W. J., Liu, Y. C., Mwangi, F. K., Chen, W. H., Lin, S. L., Fukushima, Y., Liao, C. N., & Wang, L. C. (2011). Assessment of energy performance and air pollutant emissions in a diesel engine generator fueled with water-containing ethanol–biodiesel–diesel blend of fuels. Energy, 36, 5591–5599.

    Article  CAS  Google Scholar 

  • Li, Z., & Yang, P. (2018). Review on physicochemical, chemical, and biological processes for pharmaceutical wastewater. IOP Conf. Ser.: Earth Environmental Science. 113 012185. https://doi.org/10.1088/1755-1315/113/1/012185.

  • Li, H. & Ma, Y. (2016). Field study on the uptake, accumulation, translocation and risk assessment of PAHs in a soil-wheat system with amendments of sewage sludge. Science of the Total Environment.

  • Liang, X., Guo, C., Liao, C., Liu, S., Wick, L. Y., Peng, D., Yi, X., Lu, G., Yin, H., Lin, Z., & Dang, Z. (2017). Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs). Environmental Pollution, 225, 129–140.

    Article  CAS  Google Scholar 

  • Loss, E. M. O., & Yu, J. (2018). Bioremediation and microbial metabolism of benzo(a)pyrene. Molecular Microbiology. https://doi.org/10.1111/mmi.14062

    Article  Google Scholar 

  • Lu, L., Li, A., Ji, X., He, S., & Yang, C. (2020). Surfactant-facilitated alginate-biochar beads embedded with PAH-degrading bacteria and their application in wastewater treatment. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-10830-z

    Article  Google Scholar 

  • Ma, X., Ding, N., Peterson, E. C., & Daugulis, A. J. (2016). Heavy metals species affect fungal-bacterial synergism during the bioremediation of fluoranthene. Applied of Microbiology and Biotechnology., 100, 7741–7750. https://doi.org/10.1007/s00253-016-7595-4

    Article  CAS  Google Scholar 

  • Mahgoub, H. (2019). Review article of nanoparticles used for extraction of polycyclic aromatic hydrocarbons. Journal of Chemistry. https://doi.org/10.1155/2019/4816849.

  • Mai-Prochnow, A., Clauson, M., Hong, J., & Murphy, A. B. (2016). Gram-positive and Gram-negative bacteria differ in their sensitivity to cold plasma. Scientific Reports, 6, 38610. https://doi.org/10.1038/srep38610

    Article  CAS  Google Scholar 

  • Malik, Z., Ravindran, K., & Sathiyaraj, G. (2017). Phytoremediation: a novel strategy and eco-friendly green technology for removal of toxic metals. International Journal of Agricultural and Environmental Research. IJAAER. 1–18.

  • Mandal, S. K., & Das, N. (2015). Microbial Remediation of High Molecular Weight PAHs from Environment: An Overview. International Journal of ChemTech Research, 8(8), 36–43.

    CAS  Google Scholar 

  • Manasa, R. L., & Mehta, A. (2020). Wastewater: Sources of pollutants and its remediation. In: Environmental Biotechnology Vol. 2. Environmental Chemistry for a Sustainable World, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-030-38196-7_9.

  • Mansouri, A., Abbes, C., & Landoulsi, A. (2017). Combined intervention of static magnetic field and growth rate of Microbacterium maritypicum CB7 for Benzo(a)pyrene biodegradation. Microbial Pathogenesis. https://doi?https://doi.org/10.1016/j.micpath.2017.10.008.

  • Mao, J., & Guan, W. (2016). Fungal degradation of polycyclic aromatic hydrocarbons (PAHs) by Scopulariopsis brevicaulis and its application in bioremediation of PAH contaminated soil. Acta Agriculturae Scandinavica, Vol 66, Issue 5. https://doi.org/10.1080/09064710.2015.1137629.

  • Marchal, G., Smith, K. E. C., Mayer, P., Wollesen de Jonge, L., & Karlson, U. G. (2014). Impact of soil amendments and the plant rhizosphere on PAH behaviour in soil. Environmental Pollution, 188, 124–131.

    Article  CAS  Google Scholar 

  • Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals. Heavy Metals. https://doi.org/10.5772/intechopen.76082

    Article  Google Scholar 

  • McGenity, T. J. (2010). Halophilic hydrocarbon degraders. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid Microbiology (pp. 1939–1951). Springer-Verlag.

    Chapter  Google Scholar 

  • Mehetre, G. T., Dastager, S. G., & Dharne, M. S. (2019). Biodegradation of mixed polycyclic aromatic hydrocarbons by pure and mixed cultures of biosurfactant producing thermophilic and thermo-tolerant bacteria. The Science of the Total Environmental, 679, 52–60. https://doi.org/10.1016/j.scitotenv.2019.04.376

    Article  CAS  Google Scholar 

  • Messina, E., Denaro, R., Crisafi, F., Smedile, F., Cappello, S., Genovese, M., Genovese, L., Giuliano, L., Russo, D., Ferrer, M., Golyshinc, P., & Yakimov, M. M. (2016). Genome sequence of obligate marine polycyclic aromatic hydrocarbons-degrading bacterium Cycloclasticus sp. 78-ME, isolated from petroleum deposits of the sunken tanker Amoco Milford Haven, Mediterranean Sea. Marine Genomics, 25, 11–21. https://doi.org/10.1016/j.margen.2015.10.006

    Article  Google Scholar 

  • Mohapatra, B., & Phale, P. S. (2021). Microbial degradation of naphthalene and substituted naphthalenes: Metabolic diversity and genomic insight for bioremediation. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2021.602445

    Article  Google Scholar 

  • Mohd- Kamil, N. A. F., Hamzah, N., Abdul-Talib, S., & Hussain, N. (2016). Improving mathematical model in biodegradation of PAHs contaminated soil using gram-positive bacteria. Soil and Sediment Contamination: An International Journal. https://doi.org/10.1080/15320383.2016.1168356.

  • Mojiri, A., Zhou, J. L., Ohashi, A., Ozaki, N., & Kindaichi, T. (2019). Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. The Science of the Total Environmental. https://doi.org/10.1016/j.scitotenv.2019.133971

    Article  Google Scholar 

  • Mohammadi, L., Rahdar, A., Bazrafshan, E., Dahmardeh, H., Susan, M. A. B. H., & Kyzas, G. Z. (2020). Petroleum Hydrocarbon Removal from Wastewaters: A Review. Processes, 8(4), 447. https://doi.org/10.3390/pr8040447

    Article  CAS  Google Scholar 

  • Nikitha, T., Satyaprakash, M., Sadhana, S., & Padal, S. (2017). A review on polycyclic aromatic hydrocarbons: their transport, fate and biodegradation in the environment. International Journal of Current Microbiology and Applied Science. https://doi.org/10.20546/ijcmas.2017.604.199.

  • Nwaichi, E. O., & Ntorgbo, S. A. (2016). Assessment of PAHs levels in some fish and seafood from different coastal waters in the Niger Delta. Toxicology Reports, 3 (167–172). https://doi.org/10.1016/j.toxrep.2016.01.005.

  • Obire, O., Aleruchi, O., & Wemedo, S. A. (2020). Fungi in biodegradation of polycyclic aromatic hydrocarbons in oilfield wastewater. Acta Scientific Microbiology, Vol 3 Issue 4.

  • Olowomofe, T. O., Oluyege, J. O., Aderiye, B. I., & Oluwole, O. A. (2019). Degradation of polyaromatic fractions of crude oil and detection of catabolic genes in hydrocarbon-degrading bacteria isolated from Agbabu bitumen sediments in Ondo State. AIMS Microbiology, 5(4), 308–323. https://doi.org/10.3934/microbiol.2019.4.308

    Article  CAS  Google Scholar 

  • Ortega-González, D. K., Cristiani-Urbina, E., Flores-Ortíz, C. M., Cruz-Maya, J. A., Cancino-Díaz, J. C., & Jan-Roblero, J. (2014). Evaluation of the removal of pyrene and fluoranthene by Ochrobactrum anthropi, Fusarium sp. and their coculture. Applied Biochemistry and Biotechnology, 175(2). https://doi.org/10.1007/s12010-014-1336-x.

  • Othman, N., Abdul-Talib, S., & Tay, C. C. (2016). Optimization of low ring polycyclic aromatic biodegradation. IOP Conf. Ser: Material Science Engineering. https://doi.org/10.1088/1757-899X/136/1/012054.

  • Othman, N., Hussain, N., & Abdul-talib, S. (2010). Isolation and Optimization of Phenanthrene Degradative Bacteria from Municipal Sludge for PAHs Bioremediation. 3rd Southeast Asian Natural Resources and Environmental Management, 3–5 Ogos 2010, Promenade Hotel, Sabah, Malaysia.

  • Paria, S. (2008). Surfactant-enhanced remediation of organic contaminated soil and water. Advance in Colloid and Interface Science. 138 (1), 24e58.

  • Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic aromatic hydrocarbons: Sources, toxicity and remediation approaches. Frontiers in Microbiology, 11, 562813. https://doi.org/10.3389/fmicb.2020.562813

    Article  Google Scholar 

  • Patel K. & Patel M. (2020). Improving bioremediation process of petroleum wastewater using biosurfactants producing Stenotrophomonas sp. S1VKR-26 and assessment of phytotoxicity. Bioresource Technology. https://doi.org/10.1016/j.biortech.2020.123861.

  • Pavanello, S., Campisi, M., Mastrangelo, G., Hoxha, M., & Bollati, V. (2020). The effects of everyday-life exposure to polycyclic aromatic hydrocarbons on biological age indicators. Environmental Health, 19, 128. https://doi.org/10.1186/s12940-020-00669-9

    Article  CAS  Google Scholar 

  • Peng, X., Xu, P.-F., Du, H., Tang, Y., Meng, Y., Yuan, L., et al. (2018). Degradation of polycyclic aromatic hydrocarbons: A review. Applied Ecology and Environmental Research, 16, 6419–6440.

    Article  Google Scholar 

  • Pérez-Pantoja, D., González, B., & Pieper, D. H. (2016). Aerobic degradation of aromatic hydrocarbons. In: Rojo f. (eds) aerobic utilization of hydrocarbons, oils and lipids. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-39782-5_10-1.

  • Pi, Y., Chen, B., Bao, M., Fan, F., Cai, Q., Ze, L. & Zhang, B. (2017). Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp. Bioresource Technology, 263–269.

  • Prenafeta-Boldú, F. X., de Hoog, G. S., & Summerbell, R. C. (2019). Fungal Communities in Hydrocarbon Degradation. Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology. Handbook of Hydrocarbon and Lipid Microbiology. https://doi.org/10.1007/978-3-030-14785-3_8.

  • Pugazhendi, A., Qari, H., Basahi, J. M. A., Godon, J. J., & Dhavamani, J. (2017). Role of a halothermophilic bacterial consortium for the biodegradation of PAHs and the treatment of petroleum wastewater at extreme conditions. International Biodeterioration and Biodegradation. https://doi.org/10.1016/j.ibiod.2017.03.015

    Article  Google Scholar 

  • Qamar, Z., Khan, S., Khan, A., Aamir, M., Nawab, J. & Waqas M. (2017). Appraisement, source apportionment and health risk of polycyclic aromatic hydrocarbons (PAHs) in vehicle-wash wastewater, Pakistan. Science of the Total Environment.

  • Rabani, M. S., Sharma, R., Singh, R., & Gupta, M. K. (2020). Characterization and identification of naphthalene degrading bacteria isolated from petroleum contaminated sites and their possible use in bioremediation. Polycyclic Aromatic Compounds. https://doi.org/10.1080/10406638.2020.1759663

    Article  Google Scholar 

  • Ranjan, F. M., Singh, H. P., & Batish, D. R. (2017). Polycyclic aromatic hydrocarbons as environmental pollutants: A review. International Journal of Advanced Research and Science Engineering. https://doi.org/10.13140/RG.2.2.25800.55047.

  • Rao, T. V., & Babu, R. J. (2014). Phytoremediation. National Seminar on Impact of Toxic Metals, Minerals and Solvents leading to Environmental Pollution. Journal of Chemical and Pharmaceutical Sciences.

  • Rodriguez-Campos, J., Perales-Garcia, A., Hernandez-Carballo, J., et al. (2019). Bioremediation of soil contaminated by hydrocarbons with the combination of three technologies: bioaugmentation, phytoremediation, and vermiremediation. Journal of Soils and Sediments.

  • Sabir, A., Shafiq, M., Islam, A., Sarwar, A., Dilshad, M. R., Shafeeq, A., Zahid Butt, M. T., & Jamil, T. (2015). Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis. Carbohydrates Polymers., 132, 589–597. https://doi.org/10.1016/j.carbpol.2015.06.035

    Article  CAS  Google Scholar 

  • Sakshi, & Haritash, A. K. (2020). A comprehensive review of metabolic and genomic aspects of PAH-degradation. Archives of Microbiology, 202, 2033–2058. https://doi.org/10.1007/s00203-020-01929-5

    Article  CAS  Google Scholar 

  • Samburova, V., Zielinska, B. & Khlystov A. (2017). Do 16 polycyclic aromatic hydrocarbons represent PAH air toxicity?. Toxics.

  • Shah, S., Venkatramanan, V., & Prasad, R. (2019). Sustainable Green Technologies for Environmental Management. Technology & Engineering, Pp 126.

  • Shahsavari, E., Adetutu, E. M., & Ball, A. S. (2015). Phytoremediation and necrophytoremediation of petrogenic hydrocarbon contaminated soils. Phytoremediation: Management of Environmental Contaminants, Vol 2, 321. https://doi.org/10.1007/978-3-319-10969-5_26.

  • Sharma, I. (2020). Bioremediation techniques for polluted environment: Concept, advantages, limitations, and prospects. Trace Metals in the Environment - New Approaches and Recent Advances. https://doi.org/10.5772/intechopen.90453

    Article  Google Scholar 

  • Sharma, A., Singh, S. B., Sharma, R., Chaudhary, P., Pandey, A. K., Ansari, R., et al. (2016). Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in in-situ condition. Journal of Environmental Management, 181, 728–736. https://doi.org/10.1016/j.jenvman.2016.08.024

    Article  CAS  Google Scholar 

  • Siddiqi, Z., Wertjes, W. C., & Sarlah, D. (2020). Chemical equivalent of arene monooxygenases: Dearomative synthesis of arene oxides and oxepines. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.0c02724

    Article  Google Scholar 

  • Singha, L. P., & Pandey, P. (2021). Rhizosphere assisted bioengineering approaches for the mitigation of petroleum hydrocarbons contamination in soil. Critical Reviews in Biotechnology. https://doi.org/10.1080/07388551.2021.1888066

    Article  Google Scholar 

  • Sivaram, A. K., Logeshwaran, P., Lockington, R., Naidu, R., & Megharaj, M. (2019). Low molecular weight organic acids enhance the high molecular weight polycyclic aromatic hydrocarbons degradation by bacteria. Chemosphere, Vol 222, Pp 132–140, ISSN 0045–6535, https://doi.org/10.1016/j.chemosphere.2019.01.110.

  • Sivaram, A. K., Logeshwaran, P., Lockington, R., Naidu, R., & Megharaj, M. (2018). Impact of plant photosystems in the remediation of benzo[a]pyrene and pyrene spiked soils. Chemosphere, 193, 625–634. https://doi.org/10.1016/j.chemosphere.2017.11.081

    Article  CAS  Google Scholar 

  • Smułek, W., Sydow, M., Zabielska-Matejuk, J., & Kaczorek, E. (2020). Bacteria involved in biodegradation of creosote PAH – A case study of long-term contaminated industrial area. Ecotoxicological and Environmental Safety, Vol 187. https://doi.org/10.1016/j.ecoenv.2019.109843.

  • Spini, G., Spina, F., Poli, A., Blieux, A., Regnier, T., Gramellini, C., Varese, G. C., & Puglisi, E. (2018). Molecular and microbiological insights on the enrichment procedures for the isolation of petroleum degrading bacteria and fungi. Frontiers in Microbiology, Vol 9. https://doi.org/10.3389/fmicb.2018.02543.

  • Sponza, D. T., & Gok, O. (2010). Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater. Bioresource Technology, 101, 914–924.

    Article  CAS  Google Scholar 

  • Srivastava, M., Srivastava, A., Yadav, A., & Rawat, V. (2019). Source and control of hydrocarbon pollution. Hydrocarbon Pollution and its Effect on the Environment. https://doi.org/10.5772/intechopen.86487.

  • Stogiannidis, E. & Laane, R. (2015). Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: An overview of possibilities. Environmental Contamination and Toxicology.

  • Sun, S., Jia, L., Li, B., Yuan, A., Kong, L., Qi, H., Ma, W., Zhang, A. & Wu, Y. (2018). The occurrence and fate of PAHs over multiple years in a wastewater treatment plant of Harbin, Northeast China. Science Total Environmental. https://doi.org/10.1016/j.scitotenv.2017.12.029.

  • Sun, G., Xu, Y., Liu, Y. & Liu, Z. (2014). Microbial community dynamics of soil mesocosms using Orychophragmus violaceus combined with Rhodococcus ruber Em1 for bioremediation of highly PAH-contaminated soil. Applied Microbiology and Biotechnology.

  • Supreeth, M. (2021). Enhanced remediation of pollutants by microorganisms-plant combination. International Journal of Environmental Science and Technology.

  • Tecon, R. & van der Meer, J. R. (2010). Effect of two types of biosurfactants on phenanthrene availability to the bacterial bioreporter Burkholderia sartisolistrain RP037. Applied of Microbiology Biotechnology, 85 (4), 1131e1139.

  • Teixeira, E. C., Agudelo-Castañeda, D. M. & Mattiuzi. C. D. P. (2015). Contribution of polycyclic aromatic hydrocarbon (PAH) sources to the urban environment: A comparison of receptor models. Science of the Total Environment.

  • Teng, T., Liang, J., Zhang, M., & Huo, X. (2021). Biodegradation of Crude Oil Under Low Temperature by Mixed Culture Isolated from Alpine Meadow Soil. Water Air & Soil Pollution. https://doi.org/10.1007/s11270-021-05060-z

    Article  Google Scholar 

  • Tian, J., Chow, J. C., Cao, J., et al. (2015). A biomass combustion chamber: Design, evaluation and a case study of wheat straw combustion emission tests. Aerosol and Air Quality Research.

  • Tirkey, S. R., Ram, S., & Mishra, S. (2021). Naphthalene degradation studies using Pseudomonas sp. strain SA3 from Alang-Sosiya ship-breaking yard, Gujarat. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e06334.

  • United States Environmental Protection Agency (USEPA). (1993). Provisional guidance for the quantitative risk assessment of polycyclic aromatic hydrocarbons. EPA/600/R-93/089. Washington: Office of Research and Development.

  • Vari, H. K., Roslund, M. I., Oikarinen, S., et al. (2020). Associations between land cover categories, gaseous PAH levels in ambient air and endocrine signaling predicted from gut bacterial metagenome of the elderly. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128965

    Article  Google Scholar 

  • Verma, P. & Rawat, S. (2021). Rhizoremediation of heavy metal and xenobiotic-contaminated soil: An eco-friendly approach. Removal of Emerging Contaminants Through Microbial Processes.

  • Vieira, G. A., Magrinib, M. J., Bonugli-Santos, R. C., Rodriguesb, M. V., & Sette, L. D. (2018). Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: Optimization of the degradation process. Brazilian Journal of Microbiology. https://doi.org/10.1016/j.bjm.2018.04.007

    Article  Google Scholar 

  • Wackett, L. P., & Robinson, S. L. (2020). The ever-expanding limits of enzyme catalysis and biodegradation: Polyaromatic, polychlorinated, polyfluorinated, and polymeric compounds. Biochemical Journal. https://doi.org/10.1042/BCJ20190720

    Article  Google Scholar 

  • Wang, L., Li, F., Zhan, Y., & Zhu, L. (2016). Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Environmental Science and Pollution Research, 23, 14451–14461. https://doi.org/10.1007/s11356-016-6630-4

    Article  CAS  Google Scholar 

  • Wang, P., Hu, X., Cook, S., Begonia, M., Lee, K. S., & Hwang, H. M. (2008). Effect of culture conditions on the production of ligninolytic enzymes by white-rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase. World Journal of Microbiol Biotechnology, 24, 2205–2212.

    Article  Google Scholar 

  • Wang, Z., Ma, X., Na, G., Lin, Z., Ding, Q. & Yao, Z. (2009). Correlations between physicochemical properties of pahs and their distribution in soil, moss and reindeer dung at Ny-Ålesund of the Arctic. Environmental Pollution 157: 3132–3136.

  • Wei, Z., Van Le, Q., Peng, W., Yang, Y., Yang, H., Gu, H., Lam, S. S., & Sonne, C. (2020). A review on phytoremediation of contaminants in air, water and soil. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2020.123658

    Article  Google Scholar 

  • Włóka, D., Kacprzak, M., Grobelak, A., Grosser, A. & Napora, A. (2014). The impact of PAHs contamination on the physicochemical properties and microbiological activity of industrial soils. Polycyclic Aromatic Compound 35: 372–386.

  • Wołejko, E., Wydro U., Jabłonska-Trypuc A., Butarewicz A. & Łoboda T. (2017). The effect of sewage sludge fertilization on the concentration of PAHs in urban soils. Environmental Pollution.

  • Xu, Y., Sun, G. D., Jin, J. H., Liu, Y., Luo, M., Zhong, Z. P., & Liu, Z. P. (2014). Successful bioremediation of an aged and heavily contaminated soil using a microbial/plant combination strategy. Journal of Hazardous Materials, 264, 430–438.

    Article  CAS  Google Scholar 

  • Ya, M. L., Wang, X. H., Wu, Y. L., Ye, C. X. & Li, Y. Y. (2014). Enrichment and partitioning of polycyclic aromatic hydrocarbons in the sea surface microlayer and subsurface water along the coast of Xiamen Island, China. Marine Pollution Bulletin 78, 110–117.

  • Yadav, A. N., Verma, P., Kumar, S., Kumar, V., Kumar, M., Sugitha, T. C. K., Singh, B. P., Saxena, A. K., & Dhaliwal, H. S. (2018). Chapter 2 - Actinobacteria from rhizosphere: molecular diversity, distributions, and potential biotechnological applications. New and Future Developments in Microbial Biotechnology and Bioengineering, pp 13–41. https://doi.org/10.1016/B978-0-444-63994-3.00002-3.

  • Yan, Z., Zhang, H., Wu, H., Yang, M., & Wang, S. (2016). Occurrence and removal of polycyclic aromatic hydrocarbons in real textile dyeing wastewater treatment process. Desalination Water Treatment.

  • Yang, L., Zhang, H., Zhang, X., Xing, W., Wang, Y., Bai, P., Zhang, L., Hayakawa, K., Toriba, A. & Tang, N. (2021). Exposure to atmospheric particulate matter-bound polycyclic aromatic hydrocarbons and their health effects: A review. International Journal of Environmental Research and Public Health. 2021 Feb 23;18(4):2177. https://doi.org/10.3390/ijerph18042177.

  • Yu, W., Kuang, S., & Zhao, L. (2013). Uptake, accumulation and translocation of polycyclic aromatic hydrocarbons by winter wheat cultured on oily sludge-amended soil. Chinese Journal of Geochemistry., 32, 295–302.

    Article  Google Scholar 

  • Zango, Z. U. et al. (2020). An overview and evaluation of highly porous adsorbent materials for polycyclic aromatic hydrocarbons and phenols removal from wastewater. Water.

  • Zhang, L., Wang, Y., Tan, F. et al. (2019a). Tidal variability of polycyclic aromatic hydrocarbons and organophosphate esters in the coastal seawater of Dalian,China. Science of the Total Environment. 10.1016/ j.scitotenv.2019a.134441.

  • Zhang, X., Yu, T., Li, X., Yao, J., Liu, W., Chang, S., & Chen, Y. (2019b). The fate and enhanced removal of polycyclic aromatic hydrocarbons in wastewater and sludge treatment system: A review. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643389.2019.1579619

    Article  Google Scholar 

  • Zhou, H., Wu, C., Onwudili, J. A., Meng, A., Zhang, Y. & Williams, P. T. (2015). Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions. Waste Management 36, 136e146. https://doi.org/10.1016/j.wasman.2014.09.014.

  • Zhou, W., Juanjuan, Y., Linjie, L., & Lizhong, Z. (2011). Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant. Environmental Pollution. https://doi.org/10.1016/j.envpol.2011.02.001

    Article  Google Scholar 

  • Zhao, X., Miao, R., Guo, M. & Zhou, Y. (2021). Effects of Fire Phoenix (a genotype mixture of Fesctuca arundinecea L.) and Mycobacterium sp. on the degradation of PAHs and bacterial community in soil. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-12432-9.

Download references

Acknowledgements

The authors would like to thank Universiti Teknologi MARA (UiTM) for the SRP Grant (100-RMC 5/3/SRP (090/2021)) and Ministry of Higher Education (MOHE) for the Fundamental Research Grant Scheme (FRGS) (600-IRMI/FRGS 5/3 (334/2019)).

Funding

Universiti Teknologi MARA (UiTM) for the SRP Grant (100-RMC 5/3/SRP (090/2021)) and Ministry of Higher Education (MOHE) for the Fundamental Research Grant Scheme (FRGS) (600-IRMI/FRGS 5/3 (334/2019)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norhafezah Kasmuri.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors agree to participate.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, N.A., Kasmuri, N. & Hamzah, N. Microbial Bioremediation Techniques for Polycyclic Aromatic Hydrocarbon (PAHs)—a Review. Water Air Soil Pollut 233, 124 (2022). https://doi.org/10.1007/s11270-022-05598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05598-6

Keywords

Navigation