Skip to main content
Log in

Effect of Glyphosate on Enzymatic Activities, Rhizobiaceae and Total Bacterial Communities in an Agricultural Tunisian Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The effect of glyphosate on richness and structure of the Rhizobiaceae and total bacterial communities in an agricultural soil after different treatments was studied. The herbicide was applied on the soil in the presence or the absence of Medicago sativa plants with or without inoculation with the Sinorhizobium meliloti reference strain RCR2011. Terminal-restriction fragment length polymorphism (T-RFLP) profiling showed that this agricultural soil has a high total microbial and rhizobial genetic diversity. To investigate the impact of the herbicide on microbial activity, fluorescein diacetate (FDA) and a panel of three enzymes (phosphatase, catalase, and protease BAA) were assessed. Depending on the type of enzyme tested, the enzymatic activities responded differently to the action of glyphosate, the presence of M. sativa, and the inoculation with RCR2011. The present work gives original insights into the effect of the herbicide on the rhizospheric area of M. sativa with or without rhizobial inoculation by the fact that glyphosate changes microbial diversity and affects soil enzymatic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahemad, M., & Khan, M. S. (2011). Functional aspects of plant growth promoting rhizobacteria: recent advancements. International Microbiology, 1, 39–54.

    Google Scholar 

  • Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. Academic, 576, 228–23.

    Google Scholar 

  • Araújo, A. S. F., Monteiro, R. T. R., & Abarkeli, R. B. (2003). Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere, 52, 799–804.

    Article  Google Scholar 

  • Arshad, M., Saleem, M., & Hussain, S. (2007). Perspectives of bacterial ACC deaminase in phytoremediation. Trends in Biotechnology, 25(8), 356–362.

    Article  CAS  Google Scholar 

  • Asuming-Brempong, S., Gantner, S., Adiku, S. G. K., Archer, G., Edusei, V., & Tiedje, J. M. (2008). Changes in the biodiversity of microbial populations in tropical soils under different fallow treatments. Soil Biology and Biochemistry, 40, 2811–2818.

    Article  CAS  Google Scholar 

  • Ayansina, A. D. V., & Oso, B. A. (2006). Effect of two commonly used herbicides on soil microflora at two different concentrations. African Journal of Biotechnology, 5, 129–132.

    CAS  Google Scholar 

  • Babalola, O. O. (2014). Does nature make provision for backups in the modification of bacterial community structures? Biotechnology and Genetic Engineering Reviews, 30(1), 31–48.

    Article  Google Scholar 

  • Bhattacharya, A., & Sahu, S. K. (2013). A comparative study of the effect of imdacloprid and dimethoate on soil enzyme. International Journal of Biosciences, 3(11), 172–182.

    CAS  Google Scholar 

  • Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal Microbial Biotechnology, 28, 1327–1350.

    Article  CAS  Google Scholar 

  • Brohon, B., Delolme, C., & Gourdon, R. (2001). Complementarily of bioassays and microbial activity measurements for the evaluation of hydrocarbon-contaminated soils quality. Soil Biology and Biochemistry, 33(7–8), 889–891.

    Google Scholar 

  • Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal Ecology, 18, 117–143.

    Article  Google Scholar 

  • Cunningham, S. D., & Lee, C. R. (1995). Phytoremediation: plant-based remediation of contaminated soils and sediments. In H. D. Skipper & R. F. Turco (Eds.), Bioremediation: science and application (pp. 145–156). Madison: Soil Science Society of America.

    Google Scholar 

  • Davies, H. A., & Greaves, M. P. (1981). Effects of some pesticides on soil enzyme activities. Weed Research, 21, 205–209.

    Article  CAS  Google Scholar 

  • Dubey, K. K., & Fulekar, M. H. (2013). Rhizoremediation of pesticides: mechanism of microbial interaction in mycorrhizosphere. International Journal of Advancements in Research and Technology, 2(7), 193–210.

    Google Scholar 

  • Endo, T., Kusaka, T., Tan, N., & Sakai, M. (1982). Effects of the insecticide Cartap Hydrochloride on soil enzyme activities, respiration and nitrification. Journal of Pesticide Science, 7, 101–110.

    Article  CAS  Google Scholar 

  • Enriqueta-Arias, M., Gonzalez-Perez, J. A., Gonzalez-Vila, F. J., & Ball, A. S. (2005). Soil health—a new challenge for microbiologists and chemists. International Microbiology, 8, 13–21.

    Google Scholar 

  • Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354–1364.

    Article  Google Scholar 

  • Gans, J., Woilinsky, M., & Dunbar, J. (2005). Computational improvement reveal great bacterial diversity and high metal toxicity in soil. Science, 309, 1387–1390.

    Article  CAS  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.

    Google Scholar 

  • Haney, R. L., Senseman, S. A., Hons, F. M., & Zuberer, D. A. (2000). Effect of glyphosate on soil microbial activity and biomass. Weed Science, 48, 89–93.

    Article  CAS  Google Scholar 

  • Harris, J. (2009). Soil microbial communities and restoration ecology: facilitators or followers? Science, 325, 573–574.

    Article  CAS  Google Scholar 

  • Imfeld, G., & Vuilleumier, S. (2012). Measuring the effects of pesticides on bacterial communities in soil: a critical review. European Journal of Soil Biology, 49, 22–30.

    Article  CAS  Google Scholar 

  • Kuklinsky-Sobral, J., Araujo, W. L., Mendes, R., Pizzirani-Kleiner, A. A., & Azevedo, J. L. (2005). Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant and Soil, 273, 91–99.

    Article  CAS  Google Scholar 

  • Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115–175). Chichester: Wiley.

    Google Scholar 

  • Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Soil pH as a predicator of soil bacterial community structure at the continental scale, a pyrosequencing-based assessment. Applied and Environmental Microbiology, 75, 5111–5120.

    Article  CAS  Google Scholar 

  • Lethbridge, G., Bull, A. T., & Burns, R. G. (1981). Effects of pesticides on 1,3-p-glucanase and urease activities in soil in the presence and absence of fertilisers, lime and organic materials. Pesticide Science, 12, 147–155.

    Article  CAS  Google Scholar 

  • Lipok, J., Owsiak, Y., Mlynarz, P., Forlani, G., & Kafarski, P. (2007). Phosphorus NMR as a tool to study mineralization of organophosphonates. The ability of Spirulina spp. to degrade glyphosate. Enzyme and Microbial Technology, 41, 286–291.

    Article  CAS  Google Scholar 

  • Lo, C. C. (2010). Effect of pesticides on soil microbial community. Journal of Environmental Science and Health, 45(5), 348–359.

    Article  CAS  Google Scholar 

  • Lone, A. H., Raverkar, K. P., & Pareek, N. (2014). In-vitro effects of herbicides on soil microbial communities. Thebioscan, 9(1), 11–16.

    CAS  Google Scholar 

  • Malty, J. D., Siqueira, J. O., & Moreira, F. M. D. (2006). Effects of glyphosate on soybean symbiotic microorganisms, in culture media and in greenhouse. Pesquisa Agropecuária Brasileira, 41, 285–291.

    Article  Google Scholar 

  • Mamy, L., Barriuso, E., & Gabrielle, B. (2005). Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate resistant crops. Pest Management Science, 61, 905–916.

    Article  CAS  Google Scholar 

  • Marschner, P., Yang, C. H., Lieberei, R., & Crowley, D. E. (2001). Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry, 33, 1437–1445.

    Article  CAS  Google Scholar 

  • Maśko, A. A., Lovehii, N. F., & Pototskaya, V. (1991). Stability of immobilized soil enzymes and their role in the degradation of herbicides. Vyestsi Akademii Navuk Bssr Syeryya Biyalahichnykh Navuk, 5, 47–51.

    Google Scholar 

  • Mengoni, A., Giuntini, E., & Bazzicalupo, M. (2007). Application of terminal-restriction fragment length polymorphism for molecular analysis of soil bacterial communities. In A. Varma & R. Oelmuller (Eds.), Advanced techniques in soil microbiology (pp. 295–305). Berlin: Springer.

    Chapter  Google Scholar 

  • Moore, S., & Stein, W. H. (1954). A modified ninhydrin reagent for the photometric determination of amino-acids and related compounds. Biological Chemistry, 211, 907–913.

    CAS  Google Scholar 

  • Muller, A. K., Westergaard, K., Christensen, S., & Sorensen, S. J. (2002). The diversity and function of soil microbial communities exposed to different disturbances. Microbial Ecology, 44, 49–58.

    Article  CAS  Google Scholar 

  • Nakatani, A. S., Fernandes, M. F., De Souza, R. A., Da Silva, A. P., Dos Reis-Junior, F. B., Mendes, I. C., & Hungria, M. (2014). Effects of the glyphosate-resistance gene and of herbicides applied to the soybean crop on soil microbial biomass and enzymes. Field Crops Research, 162, 20–29.

    Article  Google Scholar 

  • Nannipieri, P., Kandeler, E., & Ruggiero, P. (2002). Enzyme activities and microbiological and biochemical processes in soil. In R. P. Burns & R. P. Dick (Eds.), Enzymes in the environment activity, ecology and applications. New York: Marcel Dekker.

    Google Scholar 

  • Obojska, A., Ternan, N. G., Lejczak, B., Kafarski, P., & McMullan, G. (2002). Organophosphonate utilization by the Thermophile Geobacillus caldoxylosilyticus T20. Applied and Environmental Microbiology, 68(4), 2081–2084.

    Article  CAS  Google Scholar 

  • Øvreås, L., & Torsvik, V. (1998). Microbial diversity and community structure in two different agricultural soil communities. Microbial Ecology, 36, 303–315.

    Article  Google Scholar 

  • Padmavathiamma, P. K., Ahmed, M., & Rahman, H. A. (2014). Phytoremediation—a sustainable approach for contaminant remediation in arid and semi-arid regions—a review. Emirates Journal of Food and Agriculture, 26(9), 757–772.

    Article  Google Scholar 

  • Pradhan, S. P., Conrad, J. R., Paterek, J. R., & Srivastava, V. J. (1998). Potential of phytoremediation for treatment of PAHs in soil at MGP sites. Soil and Sediment Contamination, 7(4), 467–480.

    Article  CAS  Google Scholar 

  • Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M. C., Koops, H. P., & Wagner, M. (2000). Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and Environmental Microbiology, 66, 5368–5382.

    Article  CAS  Google Scholar 

  • Rajendhran, J., & Gunasekaran, P. (2008). Strategies for accessing soil metagenome for desired applications. Biotechnology Advances, 26, 576–590.

    Article  CAS  Google Scholar 

  • Ratcliff, A. W., Busse, M. D., & Shestak, C. J. (2006). Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Applied Soil Ecology, 34, 114–124.

    Article  Google Scholar 

  • Reilley, K. A., Banks, M. K., & Schwab, A. P. (1996). Dissipation of polycyclic aromatic hydrocarbons. Journal of Environmental Quality, 27, 220–224.

    Google Scholar 

  • Sannino, F., & Gianfreda, L. (2001). Pesticide influence on soil enzymatic activities. Chemosphere, 45, 417–425.

    Article  CAS  Google Scholar 

  • Satpathy, G., & Behera, N. J. (1993). Effect of malathion on cellulase, protease, urease and phosphatase activities from a tropical grassland soil of Orissa. India. Journal of Environmental Biology, 4, 301–310.

    Google Scholar 

  • Schnüner, J., & Rosswall, T. (1982). Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and Environmental Microbiology, 43(6), 1256–1261.

    Google Scholar 

  • Schowanek, D., & Verstraete, W. (1990). Phosphonate utilization by bacterial cultures and enrichments from environmental samples. Applied and Environmental Microbiology, 56(4), 895–903.

    CAS  Google Scholar 

  • Schwab, A. P., Al-Assi, A. A., & Banks, M. K. (1998). Adsorption of naphthalene onto plant roots. Journal of Environmental Quality, 27, 220–224.

    Article  CAS  Google Scholar 

  • Schwieger, F., & Tebbe, C. C. (2000). Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album)—linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Applied and Environmental Microbiology, 66, 3556–3565.

    Article  CAS  Google Scholar 

  • Siegel, S., & Castellan, N. J. (1989). Nonparametric statistics for the behavioral sciences (2nd ed.). New York: McGraw-HilI.

    Google Scholar 

  • Smith, A. E., & Aubin, A. J. (1993). Degradation of 14C-glyphosate in Saskatchewan soils. Bulletin of Environmental Contaminant Toxicology, 50, 499–505.

    CAS  Google Scholar 

  • Todorovic, G. R., Rampazzo, N., Mentler, A., Blum, W., Eder, A., & Strauss, P. (2014). Influence of soil tillage and erosion on the dispersion of glyphosate and aminomethylphosphonic acid in agricultural soils. International Agrophysics, 28, 93–100.

    Article  Google Scholar 

  • Tom-Petersen, A., Leser, T. D., Marsh, T. L., & Nybroe, O. (2003). Effect of copper amendment on the bacterial community in agricultural soil analyzed by T-RFLP. FEMS Microbiology Ecology, 46, 53–62.

    Article  CAS  Google Scholar 

  • Trabelsi, D., Mengoni, A., Ben Ammar, H., & Mhamdi, R. (2011). Effect of on-field inoculation of Phaseolus vulgaris with rhizobia on soil bacterial communities. FEMS Microbiology Ecology, 77, 211–222.

    Article  CAS  Google Scholar 

  • Trabelsi, D., Mengoni, A., Ben Ammar, H., & Mhamdi, R. (2012). Appraisal of the crop-rotation effect of rhizobial inoculation on potato cropping systems in relation to soil bacterial communities. Soil Biology and Biochemistry, 54, 1–6.

    Article  CAS  Google Scholar 

  • Trabelsi, D., Mengoni, A., Aouani, M. E., Bazzicalupo, M., & Mhamdi, R. (2010). Genetic diversity and salt tolerance of Sinorhizobium populations from two Tunisian soils. Annals of Microbiology, 60, 541–547.

    Article  Google Scholar 

  • USEPA (2001). U.S. Environmental Protection Agency and Science Applications International Corporation. LCAccess—LCA 101. http://www.epa.gov/ORD/NRMLR/. Accessed 11 Apr 2014.

  • Van Dillewijn, P., Villadas, P. J., & Toro, N. (2002). Effect of a Sinorhizobium meliloti strain with a modified putA gene on the rhizosphere microbial community of alfafa. Applied and Environmental Microbiology, 68, 4201–4208.

    Article  Google Scholar 

  • Van Eerd, L. L., Hoagland, R. E., Zablotowicz, R. M., & Hall, J. C. (2003). Pesticide metabolism in plants and microorganisms. Weed Science, 51, 472–495.

    Article  Google Scholar 

  • Verville, J. H., Hobbie, S. E., Chapin, F. S., & Hooper, D. U. (1998). Response of tundra Ch4 and CO2 flux to manipulation of temperature and vegetation. Biogeochemistry, 41, 215–235.

    Article  CAS  Google Scholar 

  • Vincent, J. M. (1941). Serological studies of the root-nodules bacteria. Proceedings of the Linnean Society of New South Wales, 66, 145–154.

    Google Scholar 

  • Wang, H., Brown, S. L., Magesan, G. N., Slade, A. H., Quintern, M., Clinton, P. W., & Payn, T. W. (2008). Technological options for the management of biosolids. Environmental Science and Pollution Research, 15, 308–317.

    Article  Google Scholar 

  • Wang, Y., & Oyaizu, H. (2009). Evaluation of the phytoremediation potential of four plant species for dibenzofuran contaminated soil. Journal of Hazardous Materials, 168(2–3), 760–764.

    Article  CAS  Google Scholar 

  • Wardle, D. A., & Parkinson, D. (1990). Response of the soil microbial biomass to glucose, and selective inhibitors, across a soil moisture gradient. Soil Biology and Biochemistry, 22, 825–834.

    Article  CAS  Google Scholar 

  • Yang, M., Li, Y., Wang, H., Na, Y., & Bao, Y. (2008). Effects of glyphosate on catalase activities in soil. Chinese Journal of Soil Science, 39, 1380–1383.

    CAS  Google Scholar 

  • Yang, W. Z., & Tian, J. L. (2004). Essential exploration of soil aridization in Loess Plateau. Acta Pedologica Sinica, 41, 1–6.

    Google Scholar 

  • Yeates, C., Gillings, M. R., Davison, A. D., Altavilla, N., & Veal, D. A. (1998). Methods for microbial DNA extraction from soil for PCR amplification. Biological Procedures Online, 1, 40–47.

    Article  Google Scholar 

  • Ying, Y., Haijun, Z., & Qixing, Z. (2011). Using soil available P and activities of soil dehydrogenase and phosphatase as indicators for biodegradation of organophosphorus pesticide methamidophos and glyphosate. Soil and Sediment Contamination, 20, 688–701.

    Article  Google Scholar 

  • Yu, Q., Chen, Q., Elser, J. J., He, N., Wu, H., Zhang, G., Wu, J., Bai, Y., & Han, X. (2010). Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecological Letter, 13, 1390–1399.

    Article  Google Scholar 

  • Zabaloy, M. C., & Gómez, M. A. (2005). Diversity of rhizobia isolated from an agricultural soil in Argentina based on carbon utilization and effects of herbicides on growth. Biology and Fertility of Soils, 42, 83–88.

    Article  Google Scholar 

  • Zablotowicz, R. M., & Reddy, K. N. (2004). Impact of glyphosate on the Bradyrhizobium japonicum symbiosis with glyphosate resistant transgenic soybean: a minireview. Journal of Environmental Quality, 33, 825–831.

    Article  CAS  Google Scholar 

  • Zribi, K., Djébali, N., Mrabet, M., Khayat, N., Smaoui, A., Mlayah, A., & Aouani, M. E. (2011). Physiological responses to cadmium, copper, lead, and zinc of Sinorhizobium sp. strains nodulating Medicago sativa grown in Tunisian mining soils. Annals of Microbiology, 62, 1181–1188.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of this research was provided by the Tunisian-Spanish Project AP/036273/11. The authors would like to thank Mr. Rezgui S. for the practice helps, Mr. Jbeli N. for the beneficial comments, and Mr. Boubakri H. for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kais Zribi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherni, A.E., Trabelsi, D., Chebil, S. et al. Effect of Glyphosate on Enzymatic Activities, Rhizobiaceae and Total Bacterial Communities in an Agricultural Tunisian Soil. Water Air Soil Pollut 226, 145 (2015). https://doi.org/10.1007/s11270-014-2263-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2263-8

Keywords

Navigation