Skip to main content
Log in

Degradation of Fatty Acids and Production of Biosurfactant as an Added Value, by a Bacterial Strain Pseudomonas aeruginosa DG2a Isolated from Aquaculture Wastewaters

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Aquaculture wastewaters, with oleic acid (C18:1 ω9) as the most representative contaminant fatty acid, were used as inoculum to perform enrichment cultures in mineral medium in the presence of oleic acid as the sole carbon and energy source, allowing isolation of four bacterial strains named DG1a, DG2a, DG1b and DG2b. 16S rRNA gene sequencing analysis assigned the four isolates to the species Pseudomonas aeruginosa. Among the isolates, P. aeruginosa strain DG2a showed degradation of fatty acids, including oleic acid (C18:1 ω9). The hydrophobicity features were investigated in strain DG2a, and a constitutive hydrophobicity in the bacterial cells was highlighted. The capability to produce biosurfactants by cells of the bacterial strain P. aeruginosa strain DG2a was evidenced both in the presence of oleic acid and of aquaculture wastewaters by revealing emulsifying activity, oil spreading tests, haemolytic and cetyltrimethylammonium bromide agar tests. Bacterial cultures containing raw biosurfactant were added to native wastewaters, showing a depletion of the oleic acid content. The use of the isolated bacterial strain P. aeruginosa strain DG2a and of the produced biosurfactant in bioremediation of aquaculture wastewaters is proposed, and the valorization of aquaculture wastewaters as raw material for biosurfactant production by using the isolate is moreover suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-Blast: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  • Baldi, F., Ivošević, N., Minacci, A., Pepi, M., Fani, R., Svetličić, V., et al. (1999). Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Applied and Environmental Microbiology, 65, 2041–2048.

    CAS  Google Scholar 

  • Banat, I. (1993). The isolation of a thermophilic biosurfactant-producing Bacillus species. Biotechnology Letters, 15, 591–594.

    Article  CAS  Google Scholar 

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  CAS  Google Scholar 

  • Bodour, A. A., Drees, K. P., & Maier, M. R. (2003). Distribution of biosurfactant-producing microorganisms in undisturbed and contaminated arid southwestern soils. Applied and Environmental Microbiology, 69, 3280–3287.

    Article  CAS  Google Scholar 

  • Bofill, C., Prim, N., Mormeneo, M., Manresa, A., Pastor, F. J., & Diaz, P. (2010). Differential behaviour of Pseudomonas sp. 42A2 LipC, a lipase showing greater versatility than its counterpart LipA. Biochimie, 92, 307–316.

    Article  CAS  Google Scholar 

  • Cameotra, S. S., & Makkar, R. S. (1998). Synthesis of biosurfactants in extreme conditions. Applied Microbiology and Biotechnology, 50, 520–529.

    Article  CAS  Google Scholar 

  • Chipasa, K. B., & Mędrzycka, K. (2006). Behaviour of lipids in biological wastewater treatment processes. Journal of Industrial Microbiology and Biotechnology, 33, 635–645.

    Article  CAS  Google Scholar 

  • Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., et al. (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 37(Database issue), D141–D145. doi:10.1093/nar/gkn879.

    Article  CAS  Google Scholar 

  • Cooper, D. G., & Goldenberg, B. G. (1987). Surface-active agents from two Bacillus species. Environmental Microbiology, 53, 224–229.

    CAS  Google Scholar 

  • de Lima, C. J. B., Ribeiro, E. J., Sérvulo, E. F. C., Resende, M. M., & Cardoso, V. L. (2009). Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil. Applied Biochemistry and Biotechnology, 152, 156–168.

    Article  Google Scholar 

  • Franzetti, A., Bestetti, G., Caredda, P., La Colla, P., & Tamburini, E. (2008). Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiology Ecology, 63, 238–248.

    Article  CAS  Google Scholar 

  • Heipieper, H. J., Cornelissen, S., & Pepi, M. (2010). Surface properties and cellular energetics of bacteria in response to the presence of hydrocarbons. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology (Vol. 2, pp. 1615–1624). Berlin: Springer. Part 9.

    Chapter  Google Scholar 

  • Henkel, M., Müller, M. M., Kügler, J. H., Lovaglio, R. B., Contiero, J., Syldatk, C., et al. (2012). Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochemistry, 47, 1207–1219.

    Article  CAS  Google Scholar 

  • Keenan, D., & Sabelnikov, A. (2000). Biological augmentation eliminates grease and oil in bakery wastewater. Water Environ Research, 72, 141–146.

    Article  CAS  Google Scholar 

  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.

    Article  CAS  Google Scholar 

  • Kumar, S., Dudley, J., Nei, M., & Tamura, K. (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics, 9, 299–306.

    Article  CAS  Google Scholar 

  • Li, Z. K., Brian, A., & Wrenn, C. A. (2004). Effects of ferric hydroxide on the anaerobic biodegradation kinetics and toxicity of vegetable oil in freshwater sediments. Water Research, 38, 3859–3868.

    Article  CAS  Google Scholar 

  • Liu, V. I., Nakhla, G., & Bassi, A. (2004). Treatability and kinetics studies of mesophilic aerobic biodegradation of high oil and grease pet food wastewater. Journal of Hazardous Materials, 112, 87–94.

    Article  CAS  Google Scholar 

  • Lyczak, J. B., Cannon, C. L., & Pier, G. B. (2002). Lung infections associated with cystic fibrosis. Clinical Microbiology Reviews, 15, 194–222.

    Article  CAS  Google Scholar 

  • Mahjaubi, M., Jaouani, A., Guesmi, A., Ben Amor, S., Jouini, A., Cherif, H., et al. (2013). Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites in Tunisia: isolation, identification and characterization of the biotechnological potential. New Biotechnology. doi:10.1016/j.nbt.2013.03.004.

    Google Scholar 

  • Makkar, R. S., & Cameotra, S. S. (2002). An update on the use of unconventional substrates for the biosurfactant production and their new applications. Applied Microbiology and Biotechnology, 58, 428–434.

    Article  CAS  Google Scholar 

  • Makkar, R. S., Cameotra, S. S., & Banat, I. M. (2011). Advances in utilization of renewable substrates for biosurfactant production. Applied Microbiology and Biothechnology Express, 1, 5.

    Google Scholar 

  • Maldonando, M., Carmona, M. C., Echeverría, Y., & Riesgo, A. (2005). The environmental impact of Mediterranean cage fish farms at semi-exposed locations: does it need a re-assessment? Helgoland Marine Research, 59, 121–135.

    Article  Google Scholar 

  • Matsumiya, Y., Wakita, D., Kimura, A., Sanpa, S., & Kubo, M. (2007). Isolation and characterization of a lipid-degrading bacterium and its application to lipid-containing wastewater treatment. Journal of Bioscience Bioengineering, 103, 325–330.

    Article  CAS  Google Scholar 

  • Morikawa, M. (2006). Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. Journal of Bioscience and Bioengineering, 101, 1–8.

    Article  CAS  Google Scholar 

  • Morrison, W. R., & Smith, L. M. (1964). Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. Journal of Lipid Research, 5, 600–608.

    CAS  Google Scholar 

  • Mulligan, C. N. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133, 183–198.

    Article  CAS  Google Scholar 

  • Pepi, M., Cesàro, A., Liut, G., & Baldi, F. (2005). An Antarctic psychrotrophic bacterium Halomonas sp. ANT-3b, growing on n-hexadecane, produces a new emulsifying glycolipid. FEMS Microbiology Ecology, 53, 157–166.

    Article  CAS  Google Scholar 

  • Perfumo, A., Banat, I., Canganella, F., & Marchant, R. (2006). Rhamnolipid production by a thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Applied Microbiology and Biotechnology, 72, 132–138.

    Article  CAS  Google Scholar 

  • Reis, F. A., Servulo, E. F., & De Franca, F. P. (2004). Lipopeptide surfactant production by Bacillus subtilis grown on low-cost raw materials. Applied Biochemistry and Biotechnology, 115, 899–912.

    Article  Google Scholar 

  • Ron, E. Z., & Rosenberg, E. (2001). Natural roles of biosurfactants. Environmental Microbiology, 3, 229–236.

    Article  CAS  Google Scholar 

  • Rosenberg, M., Gutnick, D., & Rosenberg, E. (1980). Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiology Letters, 9, 29–33.

    Article  CAS  Google Scholar 

  • Saatci, Y., Arslan, E. I., & Konar, V. (2003). Removal of total lipids and fatty acids from sunflower oil factory effluent by UASB bioreactor. Bioresource Technology, 87, 269–272.

    Article  CAS  Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  • Siegmund, I., & Wagner, F. (1991). New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnology Techniques, 5, 265–268.

    Article  CAS  Google Scholar 

  • Smibert, R. M., & Krieg, N. R. (1981). General characterization. In P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, & G. B. Philips (Eds.), Manual of methods for general bacteriology (pp. 411–442). Washington: American Society for Microbiology.

    Google Scholar 

  • Sousa, D. Z., Smidt, H., Alves, M. M., & Stams, A. J. (2009). Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS Microbiology Ecology, 68, 257–272.

    Article  CAS  Google Scholar 

  • Stickland, H. G., Davenport, P. W., Lilley, K. S., Griffin, J. L., & Welch, M. (2010). Mutation of nfxB causes global changes in the physiology and metabolism of Pseudomonas aeruginosa. Journal of Proteome Research, 9, 2957–2967.

    Article  CAS  Google Scholar 

  • Thavasi, R., Jayalakshmi, S., Balasubramanian, T., & Banat, I. M. (2007). Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake. Letters in Applied Microbiology, 45, 686–691.

    Article  CAS  Google Scholar 

  • Watanabe, K. (2001). Microorganisms relevant to bioremediation. Current Opinion in Biotechnology, 12, 237–241.

    Article  CAS  Google Scholar 

  • Zhang, H., Xiang, H., Zhang, G., Cao, X., & Meng, Q. (2009). Enhance treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution. Journal of Hazardous Materials, 167, 217–223.

    Article  CAS  Google Scholar 

  • Zhu, Y., Gan, J. J., Zhang, G. L., Yao, B., Zhu, W. J., & Meng, Q. (2007). Reuse of waste frying oil for production of rhamnolipids using Pseudomonas aeruginosa zju.u1M. Journal of Zhejiang University. Science. B, 8, 1514–1520.

    Article  CAS  Google Scholar 

  • Zouboulis, A. J., & Avranas, A. (2000). Treatment of oil-in-water emulsion by coagulation and dissolved-air flotation. Colloids and Surfaces A, 172, 153–161.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank E. Bertelli for image study of bacterial cells, S. Gasperini for his technical support and E. Franchi for information on the aquaculture plant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milva Pepi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pepi, M., Focardi, S., Lobianco, A. et al. Degradation of Fatty Acids and Production of Biosurfactant as an Added Value, by a Bacterial Strain Pseudomonas aeruginosa DG2a Isolated from Aquaculture Wastewaters. Water Air Soil Pollut 224, 1772 (2013). https://doi.org/10.1007/s11270-013-1772-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1772-1

Keywords

Navigation