Skip to main content
Log in

Behavior of lipids in biological wastewater treatment processes

  • Review
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Lipids (characterized as oils, greases, fats and long-chain fatty acids) are important organic components of wastewater. Their amount, for example, in municipal wastewater is approximately 30–40% of the total chemical oxygen demand. The concern over the behavior of lipids in biological treatment systems has led to many studies, which have evaluated their removal, but still the exact behavior of lipids in these processes is not well understood. In this review, we discuss the current knowledge of how lipids/fatty acids affect both aerobic and anaerobic processes and specific methods that have been used in an attempt to enhance their removal from wastewater. Overall, the literature shows that lipids/fatty acids are readily removed by biological treatment methods, inhibitory to microbial growth as well as the cause of foaming, growth of filamentous bacteria and floc flotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander M (1999) Biodegradation and bioremediation. Academic, London

    Google Scholar 

  2. Anderson RE (1980) Lipase production, lipolysis, and formation of volatile compounds by Pseudomonas fluorescens in fat containing media. J Food Sci 45:1694–1701

    Google Scholar 

  3. Andreasen K, Nielsen PH (1997) Application of microautoradiography to study substrate uptake by filamentous microorganisms in activated sludge. Appl Environ Microbiol 63:3662–3668

    CAS  Google Scholar 

  4. Andreasen K, Nielsen PH (1998) In situ characterization of substrate uptake by Microthrix parvicella using microautoradiography. Water Sci Technol 37:19–26

    Article  CAS  Google Scholar 

  5. Andreasen K, Nielsen PH (2000) Growth of Microthrix parvicella in nutrient removal activated sludge plants—studies of in situ physiology. Water Res 34:1559–1569

    Article  CAS  Google Scholar 

  6. Angelidaki I, Ahring BK (1992) Effect of free long-chain fatty acids on thermophilic anaerobic digestion. Appl Microbiol Biotechnol 37:802–812

    Article  Google Scholar 

  7. Aquino SF, Stuckey DC (2002) Characterization of soluble microbial products (SMP) in effluents from anaerobic reactors. Water Sci Technol 45:127–132

    CAS  Google Scholar 

  8. Barker DJ, Stuckey DC (1999) A review of soluble microbial products (SMP) in wastewater treatment systems. Water Res 33:3063–3082

    Article  CAS  Google Scholar 

  9. Baskir CI, Hansford GS (1980) Product formation in the continuous culture of microbial populations grown on carbohydrates. Biotechnol Bioeng XXII:1857–1875

    Article  Google Scholar 

  10. Beccari M, Bonemazzi F, Majone M, Ricardi C (1996) Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents. Water Res 30:183–189

    Article  CAS  Google Scholar 

  11. Beccari M, Majone M, Torrisi L (1998) Two-reactor system with partial phase separation for anaerobic treatment of oil mill effluents. Water Sci Technol 38:53–60

    Article  CAS  Google Scholar 

  12. Becker P, Koster D, Popov MN, Markossian S, Antranikian G, Märkl H (1999) The biodegradation of olive oil and the treatment of lipid-rich wool scouring wastewater under aerobic conditions. Water Res 33:653–660

    Article  CAS  Google Scholar 

  13. Borja R, Martin A, Banks CJ, Alonso V, Chica A (1995) A kinetic study of anaerobic of olive mill wastewater at mesophilic and thermophilic temperatures. Environ Pollut 88:13–18

    Article  PubMed  CAS  Google Scholar 

  14. Borja R, Alba J, Banks CJ (1996) Anaerobic digestion of wash waters derived from the purification of virgin olive oil using a hybrid reactor combining a filter and a sludge blanket. Proc Biochem 31:219–224

    Article  CAS  Google Scholar 

  15. Brandt BW, van Leeuwen IMM, Kooijman SALM (2003) A general model for multiple substrate biodegradation. Application to co-metabolism of structurally non-analogous compounds. Water Res 37:4843–4854

    Article  PubMed  CAS  Google Scholar 

  16. Chang IS, Chung CM, Han SH (2001) Treatment of oily wastewater by ultrafiltration and ozone. Desalination 133:139–144

    Article  Google Scholar 

  17. Chao AC, Yang W (1981) Treatment of wool scouring wastewater. J Water Pollut Control Fed 53:311–317

    CAS  Google Scholar 

  18. Chipasa KB, Mędrzycka K (2004a) Adaptive response of microbial communities to soluble microbial products. J Ind Microbiol Biotechnol 31:384–390

    CAS  Google Scholar 

  19. Chipasa KB, Mędrzycka K (2004b) Behavior of microbial communities developed in the presence/reduced level of soluble microbial products. J Ind Microbiol Biotechnol 31:457–461

    Article  CAS  Google Scholar 

  20. Criddle CS (1993) The kinetics of co-metabolism. Biotechnol Bioeng 41:1048–1056

    Article  CAS  Google Scholar 

  21. Dignac MF, Ginestet P, Rybacki D, Bruchet A, Urbrain V, Scribe P (2000) Fate of wastewater organic pollution during activated sludge treatment: nature of residual organic matter. Water Res 34:4185–4194

    Article  CAS  Google Scholar 

  22. Duchene P (1994) Biological foams: the cause–effect relationship, test results and combat strategy. Water Sci Technol 29:239–247

    CAS  Google Scholar 

  23. Eikelboom D H, Andreadakis A, Andreasen K. (1998) Survey of the filamentous population in nutrient removal plants in four European countries. Water Sci Technol 37:281–290

    Article  CAS  Google Scholar 

  24. Ekama GA, Dold PL, Marais GVR (1986) Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems. Water Sci Technol 18:91–114

    CAS  Google Scholar 

  25. Erhan SM, Kleiman R (1997) Biodegradation of estolides from monounsaturated fatty acids. J Am Oil Chem Soc 74:605–607

    CAS  Google Scholar 

  26. Faisal M, Unno H (2001) Kinetics analysis of palm oil mill wastewater treatment by a modified anaerobic baffled reactor. Biochem Eng J 9:25–31

    Article  CAS  Google Scholar 

  27. Galbraith H, Miller TB (1973) Effect of metal cations and pH on the antibacterial activity and uptake of long chain fatty acids. J Appl Bacteriol 36:635–646

    PubMed  CAS  Google Scholar 

  28. Garcia HS, Hill CG, Amundson CH (1992) Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzyme Microb Technol 14:426–446

    Article  PubMed  Google Scholar 

  29. Goto M, Nakashio F, Yoshizuka K, Inoue K (1992) Hydrolysis of triolein by lipase in a hollow fiber reactor. J Membrane Sci 74:207–14

    Article  CAS  Google Scholar 

  30. Grau P, Dohanyos M, Chudoba J (1975) Kinetics of multi-component substrate removal by activated sludge. Water Res 9:637–642

    Article  Google Scholar 

  31. Guiot SR (1997) Process coupling of anaerobic and aerobic biofilms for treatment of contaminated waste liquids In: Wise DL (ed) Global environmental biotechnology. Proceedings of the 3rd international symposium of the International Society for Environmental Biotechnology, Studies in environmental sciences, vol. 66. Elsevier, Amsterdam, pp 591–601

  32. Gujer W, Zehnder AJB (1983) Conversion process in anaerobic digestion. Water Sci Technol 15:127–167

    CAS  Google Scholar 

  33. Hanaki K, Matsuo T, Kumazaki K (1990) Treatment of oily cafeteria wastewater by single-phase and two-phase anaerobic filter. Water Sci Technol 22:299–306

    CAS  Google Scholar 

  34. Hawkes FR, Donnelly T, Anderson GK (1995) Comparative performance of anaerobic digesters operating on ice-cream wastewater. Water Res 29:525–533

    Article  CAS  Google Scholar 

  35. Hrudey SE (1981) Activated sludge response to emulsified lipid loading. Water Res 15:361–373

    Article  CAS  Google Scholar 

  36. Hsu TC, Hanaki K, Matsumoto J (1983) Kinetics of hydrolysis, oxidation and adsorption during olive oil degradation by activated sludge. Biotechnol Bioeng 25:1829–1839

    Article  CAS  Google Scholar 

  37. Hwu CS, Donlon B, Lettinga G (1996) Comparative toxicity of long-chain fatty acid to anaerobic sludges from various origins. Water Sci Technol 34:351–358

    CAS  Google Scholar 

  38. Hwu CS, van Beek B, van Lier JB, Lettinga G (1997) Thermophilic high-rate anaerobic treatment of wastewater containing long-chain fatty acids: effect of washed out biomass recirculation. Biotechnol Lett 19:453–456

    Article  CAS  Google Scholar 

  39. Hwu CS, Tseng SK, Yuan CY, Kulik Z, Lettinga G (1998) Biosorption of long-chain fatty acids in UASB treatment process. Water Res 32:1571–1579

    Article  CAS  Google Scholar 

  40. Hwu CS, Van Lier JB, Lettinga G (1998) Physicochemical and biological performance of expanded granular sludge bed reactors treating long-chain fatty acids. Proc Biochem 33:75–81

    Article  CAS  Google Scholar 

  41. Jan G, Leverrier P, Pichereau V, Boyaval P (2001) Changes in protein synthesis and morphology during acid adapatation of Propionibacterium freudenreichii. Appl Environ Microbiol 67:2029–2036

    Article  PubMed  CAS  Google Scholar 

  42. Jenkins D (1992) Towards a comprehensive model of activated sludge bulking and foaming. Water Sci Technol 25:215–230

    CAS  Google Scholar 

  43. Johnsson T, Nikkilä P, Toivonen L, Rosenqvist H, Laako S (1995) Cellular fatty acid profiles of Lactobacillus and Lactococcus strains in relation to oleic acid content of the cultivation medium. Appl Environ Microbiol 61:4497–4499

    CAS  Google Scholar 

  44. Kankaanpää, Yang B, Kallio H, Isolauri, Salminen (2004) Effects of polyunsaturated fatty acids in growth medium on lipid composition and on physicochemical surface properties of Lactobacilli. Appl Environ Microbiol 70:129–136

    Article  PubMed  CAS  Google Scholar 

  45. Keenan D, Sabelnikov A (2000) Biological augmentation eliminates grease and oil in baker wastewater. Water Environ Res 72:141–146

    CAS  Google Scholar 

  46. Kellel M, Malesieux G, Gousailles M, Vedry B (1994) Bioelimination of waste oils by saponification. Tech Sci Methods 11:619–623

    Google Scholar 

  47. Koster IW, Cramer A (1987) Inhibition of methanogenesis from acetate in granular sludge by long-chain fatty acids. Appl Environ Microbiol 53:403–409

    PubMed  CAS  Google Scholar 

  48. Kovarova-Kovar K, Egli T (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62:646–666

    PubMed  CAS  Google Scholar 

  49. Krahe M, Antranikian G, Märkl H (1996) Fermentation of extremophilic microorganisms. FEMS Microbiol Rev 18:271–285

    CAS  Google Scholar 

  50. Kunau WH, Dommes V, Schulz H (1995) β-Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: A century of continued progress. Prog Lipid Res 34:267–342

    Article  PubMed  CAS  Google Scholar 

  51. Lalman JA, Bagley DM (2001) Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Water Res 35:2975–2983

    Article  PubMed  CAS  Google Scholar 

  52. Lefebvre X, Paul E, Mauret M, Baptiste P, Capdeville B (1998) Kinetic characterization of saponified domestic lipid residues aerobic biodegradation. Water Res 32:3031–3038

    Article  CAS  Google Scholar 

  53. Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie van Leeuwenhoek 67:3–28

    Article  PubMed  CAS  Google Scholar 

  54. Li YY, Sasaki H, Yamashita K, Seki K, Kamigochi I (2002) High-rate methane fermentation of lipid-rich food wastes by a high-solids co-digestion process. Water Sci Technol 45:143–150

    CAS  Google Scholar 

  55. Loehr RC, Roth JC (1968) Aerobic degradation of long-chain fatty acid salts. J Water Pollut Control Fed 40:R385–R403

    PubMed  CAS  Google Scholar 

  56. Lütgens M, Gottschalk G (1980) Why a co-substrate is required for anaerobic growth of Escherichia coli on citrate. J Gen Microbiol 119:63–70

    PubMed  Google Scholar 

  57. Maloy SR, Ginsburgh CL, Simons RW, Nunn WD (1981) Transport of long and medium chain fatty acids by Escherichia coli K12. J Biol Chem 256:3735–3742

    PubMed  CAS  Google Scholar 

  58. McDermont GN (1976) Liquid waste treatment in the vegetable oil processing industry—U.S. practices. J Amer Oil Chem Soc 53:449–458

    Google Scholar 

  59. Miron Y, Zeeman G, van Lier JB, Lettinga G (2000) The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Res 34:1705–1713

    Article  CAS  Google Scholar 

  60. Mouneimne AH, Carrere H, Bernet N, Delgenes JP (2003) Effect of saponification on anaerobic digestion of solid fatty residues. Bioresour Technol 90:89–94

    Article  PubMed  CAS  Google Scholar 

  61. Naidas H, Capela I, Arroja L, Duarte A (2005) Treatment of dairy wastewater in UASB reactors inoculated with flocculent biomass. Water SA 31:603–607

    Google Scholar 

  62. Namour PH, Muller MC (1998) Fractionation of organic matter from wastewater treatment plants before and after a 21-day biodegradability test: a physical–chemical method for measurement of the refractory part of effluents. Water Res 32:1224–2231

    Google Scholar 

  63. Namkung E, Rittmann BE (1986) Soluble microbial products (SMP) formation kinetics by biofilms. Water Res 20:795–806

    Article  CAS  Google Scholar 

  64. Novak JT, Kraus DL (1973) Degradation of long chain fatty acids by activated sludge. Water Res 7:843–851

    Article  CAS  Google Scholar 

  65. Paiva AL, Balcao VM, Malcata FX (2000) Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzyme Microb Technol 27:187–204

    Article  PubMed  CAS  Google Scholar 

  66. Peil KM, Gaudy AF (1971) Kinetic constants for aerobic growth of microbial populations selected with various single compounds and with municipal wastes as substrates. Appl Microbiol 21:253–256

    CAS  Google Scholar 

  67. Pereira MA, Pires OC, Mota M, Alves MM (2002) Anaerobic degradation of oleic acid by suspended and granular sludge: identification of palmitic acid as a key intermediate. Water Sci Technol 45:139–144

    CAS  Google Scholar 

  68. Pernelle JJ, Gaval G, Cotteux E, Duchene P (2001) Influence of transient substrate overloads on the proliferation of filamentous bacterial populations in an activated sludge pilot plant. Water Res 35:129–134

    Article  PubMed  CAS  Google Scholar 

  69. Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Current Opin Biotechnol 11:262–270

    Article  CAS  Google Scholar 

  70. Quemeneur M, Marty Y (1994) Fatty acids and sterols in domestic wastewater. Water Res 28:1217–1226

    Article  CAS  Google Scholar 

  71. Ralston AW, Hoerr CW (1942) The solubilities of normal saturated fatty acids. J Org Chem 7:546–554

    Article  CAS  Google Scholar 

  72. Ratledge C (1992) Microbial oxidation of fatty alcohols and fatty acids. J Chem Technol Biotechnol 55:399–400

    Article  Google Scholar 

  73. Raunkjaer K, Hvitved-Jacobsen T, Nielsen PH (1994) Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Res 8:251–262

    Article  Google Scholar 

  74. Rinzema A (1993) Anaerobic digestion of long-chain fatty acids in UASB and expanded granular sludge bed reactors. Proc Biochem 28:527–537

    Article  CAS  Google Scholar 

  75. Rinzema A, Alphenaar A, Lettinga G (1989) The effect of lauric acid shock loads on the biological and physical performance of granular sludge in UASB reactors digesting acetate. J Chem Technol Biotechnol 46:257–266

    Article  CAS  Google Scholar 

  76. Rinzema A, Boone M, van Knippenberg K, Lettinga G (1994) Bacterial effect of long-chain fatty acids in anaerobic digestion. Water Environ Res 66:40–49

    CAS  Google Scholar 

  77. Ruiz I, Soto M, Veiga MC, Ligero P, Vega A, Blazquez R (1998) Performance of and biomass characterisation in a UASB reactor treating domestic wastewater at ambient temperature. Water SA 24:215–222

    CAS  Google Scholar 

  78. Saatci Y, Arslan EI, Konar V (2003) Removal of total lipids and fatty acids from sunflower oil factory effluent by UASB reactor. Bioresour Technol 87:269–272

    Article  PubMed  CAS  Google Scholar 

  79. Salminen E, Rintala J, Lokshina LY, Vavilin VA (2000) Anaerobic batch degradation of solid poultry slaughterhouse waste. Water Sci Technol 41:33–41

    PubMed  CAS  Google Scholar 

  80. Sam-Soon PAL, Loewenthal RE, Wentzel MC, Marais GR (1991) A long-chain fatty acid, oleate, as sole substrate in upflow anaerobic sludge bed (UASB) reactor systems. Water SA 17:31–36

    CAS  Google Scholar 

  81. Segal G, Ron EZ (1998) Regulation of heat-shock response in bacteria. Ann NY Acad Sci 851:147–151

    Article  PubMed  CAS  Google Scholar 

  82. Shen CF, Guiot SR (1996) Long-term impact of dissolved oxygen on activity of anaerobic granules. Biotechnol Bioeng 49:611–620

    Article  CAS  Google Scholar 

  83. Shimada Y, Sugihara A, Nagao T, Tominaga Y (1992) Induction of Geotrichum candidum Saccharomycopis lipolytica on animal fats. Appl Microbiol Biotechnol 21:292–298

    Google Scholar 

  84. Shoukry K, Schulz H (1998) Significance of the reductase-dependent pathway for the β-oxidation of unsaturated fatty acids with odd-numbered double bonds. J Biol Chem 273:6892–6899

    Article  PubMed  CAS  Google Scholar 

  85. Slijkhuis H (1983) Microthrix parvicella, a filamentous bacteria isolated from activated sludge: cultivation in a chemically defined medium. Appl Environ Microbiol 46:832–839

    PubMed  CAS  Google Scholar 

  86. Smeland TE, Nada M, Cuebas D, Schulz H (1992) NADPH-dependent β-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms. Proc Natl Acad Sci USA 89:6673–6677

    PubMed  CAS  Google Scholar 

  87. Soddell JA, Saviour RJ, Blackhall LL, Hugenholtz P (1998) New foam-forming nocardiaforms in activated sludge. Water Sci Technol 37:495–502

    Article  CAS  Google Scholar 

  88. Steiner P, Sauer U (2001) Proteins induced during adaptation of Acetobacter aceti to high acetate concentrations. Appl Environ Microbiol 67:5474–5481

    Article  PubMed  CAS  Google Scholar 

  89. Stonach SM, Rudd T, Lester JN (1986) Anaerobic digestion process in industrial wastewater treatment. Springer, Berlin Heidelberg New York

    Google Scholar 

  90. Strydom J, Mostert J, Britz T (1995) Anaerobic treatment of a synthetic dairy effluent using a hybrid digester. Water SA 21:125–130

    CAS  Google Scholar 

  91. Swern D (1979) Bailey’s industrial oil and fats, Vol 1, 4th edn, Wiley, Toronto

  92. Syutsubo K, Harada H, Ohashi A (1998) Granulation and sludge retainment during start-up of a thermophilic UASB reactor. Water Sci Technol 38:349–357

    Article  CAS  Google Scholar 

  93. Tagawa T, Takahashi H, Sekiguchi Y, Ohashi A, Harada H (2002) Pilot-plant study on anaerobic treatment of a lipid- and protein-rich food industrial wastewater by a thermophilic multi-staged UASB reactor. Water Sci Technol 45:225–230

    CAS  Google Scholar 

  94. Tan KH, Gill CO (1987) Utilization of substrates during batch growth of Pseudomonas fluorescens on olive oil, lard, and mutton tallow. Appl Microbiol Biotechnol 26:443–446

    CAS  Google Scholar 

  95. Tsezos M, Bell JP (1989) Comparison of the biosorption and desorption of hazardous organic pollutants by live and dead biomass. Water Res 23:561–568

    Article  CAS  Google Scholar 

  96. Van Lier JB, Boersma F, Debets MMWH, Lettinga G (1994) High-rate thermophilic anaerobic wastewater treatment in compartmentalized upflow reactors. Water Sci Technol 30:251–261

    Google Scholar 

  97. Van Lier JB, Groeneveld N, Lettinga G (1996) Development of thermophilic methanogenic sludge in compartmentalized upflow reactors. Biotechnol Bioeng 50:115–124

    Article  Google Scholar 

  98. Van Loosdrecht MCM, Lyklema J, Norde W, Zehnder AJB (1990) Influences of interfaces on microbial activity. Microbiol Rev 54:75–87

    PubMed  Google Scholar 

  99. Van Loosdrecht MCM, Smolders GJ, Kuba T, Heinen JJ (1997) Metabolism of microorganisms responsible for enhanced biological phosphorous removal from wastewater. Antonie van Leeuwenhoek 71:109–116

    Article  PubMed  Google Scholar 

  100. Vochten P, Schowanek S, Schowanek W, Verstraete W (1988). Aerobic versus anaerobic wastewater treatment. In: Hall ER, Hobson PN (ed) Anaerobic digestion 1988. Proceedings of the 5th international symposium on anaerobic digestion. Advances in water pollution control. Pergamon, Oxford, pp 91–104

  101. Wakelin NG, Forster CF (1997) An investigation into microbial removal of fats, oils and greases. Bioresour Technol 59:37–43

    Article  CAS  Google Scholar 

  102. Witzig R, Manz W, Rosenberger S, Krüger U, Kraume M, Szewzyk U (2002) Microbiological aspects of bioreactor with submerged membranes for treatment of municipal wastewater. Water Res 36:394–402

    Article  PubMed  CAS  Google Scholar 

  103. Young JC (1979) Removal of grease and oil by biological treatment processes. J Water Pollut Control Fed 51:2071–2087

    PubMed  CAS  Google Scholar 

  104. Yuan Z, Blackall LL (2002) Sludge population optimization: a new dimension for the control of biological wastewater treatment systems. Water Res 36:482–490

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the financial support of the Polish Ministry of Education as well as that of the authorities of the Chemical Faculty, Gdansk University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Chipasa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chipasa, K.B., Mędrzycka, K. Behavior of lipids in biological wastewater treatment processes. J IND MICROBIOL BIOTECHNOL 33, 635–645 (2006). https://doi.org/10.1007/s10295-006-0099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0099-y

Keywords

Navigation