Skip to main content

Advertisement

Log in

Organic acids enhance the uptake of lead by wheat roots

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The uptake and bioavailability of lead (Pb) in soil–plant systems remain poorly understood. This study indicates that acetic and malic acids enhance the uptake of Pb by wheat (Triticum aestivum L.) roots under hydroponic conditions. The net concentration-dependent uptake influx of Pb in the presence and absence of organic acids was characterized by Michaelis–Menten type nonsaturating kinetic curves that could be resolved into linear and saturable components. Fitted maximum uptake rates (V max) of the Michaelis–Menton saturable component in the presence of acetic and malic acids were, respectively, 2.45 and 1.63 times those of the control, while the Michaelis–Menten K m values of 5.5, 3.7 and 2.2 μM, respectively, remained unchanged. Enhanced Pb uptake by organic acids was partially mediated by Ca2+ and K+ channels, and also depended upon the physiological function of the plasma membrane P-type ATPase. Uptake may have been further enhanced by an effectively thinner unstirred layer of Pb adjacent to the roots, leading to more rapid diffusion towards roots. X-ray absorption spectroscopic studies provided evidence that the coordination environment of Pb in wheat roots was similar to that of Pb(CH3COO)2·3H2O in that one Pb atom was coordinated to four oxygen atoms via the carboxylate group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    Article  PubMed  CAS  Google Scholar 

  • Andreu L, Cornelia IU, Amparo S (2000) Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L) roots. Plant Soil 219:21–28

    Article  Google Scholar 

  • Berkelaar E, Hale BA (2003) Accumulation of cadmium by durum wheat roots: bases for citrate-mediated exceptions to the free ion model. Environ Toxicol Chem 22:1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Berne RM, Levy MN (1998) Physiology. Mosby, St Louis, p 1131

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Bregante M, Carpaneto A, Pastorino F, Gambale F (1997) Effects of mono- and multi-valent cations on the inward-rectifying potassium channel in isolated protoplasts from maize roots. Eur Biophys J 26:381–391

    Article  CAS  Google Scholar 

  • Checkai RT, Corey RB, Helmke PA (1987) Effects of ionic and complexed metal concentrations on plant uptake of cadmium and micronutrient metals from solution. Plant Soil 99:335–345

    Article  CAS  Google Scholar 

  • Cieśliński G, van Rees KCJ, Szmigielska AM, Krishnamurti GSR, Huang PM (1998) Low-molecular-weight-organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil 203:109–117

    Article  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  PubMed  CAS  Google Scholar 

  • Dupont L, Guillon E, Bouanda J, Dumonceau J, Aplincourt M (2002) EXAFS and XANES studies of retention of copper and lead by a lignocellulosic biomaterial. Environ Sci Technol 36:5062–5066

    Article  PubMed  CAS  Google Scholar 

  • Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133:307–318

    Article  PubMed  CAS  Google Scholar 

  • Godwin HA (2001) The biological chemistry of lead. Curr Opin Chem Biol 5:223–227

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson JP (2006) Visual MINTEQ version 2.50 KTH, Royal Institute of Technology, Stockholm, Sweden

  • Han F, Shan XQ, Zhang J, Xie YN, Pei ZG, Zhang SZ, Zhu YG, Wen B (2005) Organic acids promote the uptake of lanthanum by barley roots. New Phytol 165:481–492

    Article  PubMed  CAS  Google Scholar 

  • Hart JJ, Welch RM, Norvell WA, Sullivan LA, Kochian LV (1998) Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol 116:1413–1420

    Article  PubMed  CAS  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction:species variation in lead uptake and translocation. New Phytol 134:75–84

    Article  CAS  Google Scholar 

  • Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32:2004–2008

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Kochian LV, Shaff JE, Lucas WJ (1989) High affinity K+ uptake in maize roots. A lack of coupling with H+ efflux. Plant Physiol 91:1202–1211

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV (1991) Mechanisms of micronutrient uptake and translocation in plants. In: Mortvedt JJ (ed) Micronutrients in agriculture. Soil Science Society of America, Madison, pp 251–270

  • Lasat MM, Baker AJM, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol 112:1715–1722

    PubMed  CAS  Google Scholar 

  • Laurie SH, Tancock NP, McGrath SP, Sanders JR (1991) Influence of complexation on metal nutrient uptake of plants. I. EDTA in a multi-metal and computer simulation study. J Exp Bot 42:509–513

    Article  CAS  Google Scholar 

  • Leng Q, Merier RW, Yao W, Berkowits GA (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated channel. Plant Physiol 121:753–761

    Article  PubMed  CAS  Google Scholar 

  • López-Bucio J, Nieto-Jacobo MF, Ramírez-Rodríguez V, Herrera-Estrella L (2000) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160:1–13

    Article  PubMed  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  PubMed  CAS  Google Scholar 

  • Manceau A, Boisset MC, Sarret G, Hazemann JL, Mench M, Cambier P, Prost R (1996) Direct determination of lead speciation in contaminated soils by EXAFS spectroscopy. Environ Sci Technol 30:1540–1552

    Article  CAS  Google Scholar 

  • Naidu R, Harter RD (1998) Effects of different organic ligands on cadmium sorption by and extractability from soils. Soil Sci Soc Am J 62:644–650

    Article  CAS  Google Scholar 

  • Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196:788–795

    Article  CAS  Google Scholar 

  • Qin F, Wen B, Shan XQ, Xie YN, Liu T, Zhang SZ (2006) Mechanisms of competitive adsorption of Pb, Cu and Cd on peat. Environ Pollut 144:669–680

    Article  PubMed  CAS  Google Scholar 

  • Rehr JJ, Albers RC, Zabinsky SI (1992) High-order multiple-scattering calculations of X-ray-absorption fine structure. Phys Rev Lett 69:3397–3400

    Article  PubMed  CAS  Google Scholar 

  • Rensing C, Sun Y, Mitra B, Rosen BP (1998) Pb(II)-translocating P-type ATPases. J Biol Chem 273:32614–32617

    Article  PubMed  CAS  Google Scholar 

  • Sarret G, Manceau A, Spadini L, Roux JC, Hazemann JL, Soldo Y, Eybert-Bérard L, Menthonnex JJ (1998) Structural determination of Zn and Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy. Environ Sci Technol 32:1648–1655

    Article  CAS  Google Scholar 

  • Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley, Hoboken, pp 417–422

    Google Scholar 

  • Senden MHMN, van der Meer AJGM, Verburg TG, Wolterbeek HTh (1995) Citric acid in tomato plant roots and its effect on cadmium uptake and distribution. Plant Soil 171:333–339

    Article  CAS  Google Scholar 

  • Smolders E, McLaughlin MJ (1996) Chloride increases cadmium uptake in Swiss Chard in a resin-buffered nutrient solution. Soil Sci Soc Am J 60:1443–1447

    Article  CAS  Google Scholar 

  • Srivastava S, Prakash S, Srivastava MM (1999) Chromium mobilization and plant availability—the impact of organic complexing ligands. Plant Soil 212:203–208

    Article  CAS  Google Scholar 

  • Sunkar R, Kaplan B, Bouche N, Arazi T, Dolev D, Talke IN, Maathuis FJM, Sanders D, Bouchez D, Fromm H (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24:533–542

    Article  PubMed  CAS  Google Scholar 

  • Tomsig JL, Suszkiw JB (1991) Permeation of Pb2+ through calcium channels: fura-2 measurements of voltage- and dihydropyridine-sensitive Pb2+ entry in isolated bovine chromaffin cells. Biochim Biophys Acta. Biomembranes 1069:197–200

    Article  CAS  Google Scholar 

  • Tyerman SD, Skerrett IM (1999) Root ion channels and salinity. Sci Hortic 78:175–235

    Article  CAS  Google Scholar 

  • Vassil AD, Kapulnik Y, Raskin I, Salt DE (1998) The role of EDTA in Pb transport and accumulation by Indian mustard. Plant Physiol 117:447–453

    Article  PubMed  CAS  Google Scholar 

  • Wang ZW, Zhang SZ, Shan XQ (2004) Effects of low-molecular-weight-organic-acids on uptake of lanthanum by wheat roots. Plant Soil 261:163–170

    Article  CAS  Google Scholar 

  • White PJ (1997) Cation channels in the plasma membrane of rye roots. J Exp Bot 48:499–514

    Article  CAS  Google Scholar 

  • Wu J, Hsu FC, Cunningham SD (1999) Chelate-assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints. Environ Sci Technol 33:898–1904

    Google Scholar 

  • Zhang SZ, Shan XQ (1997) The determination of rare earth elements in soil by inductively coupled plasma mass spectrometry. Atomic Spectrosc 18:140–144

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 20237010 and 20177030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoquan Shan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Shan, X., Liu, T. et al. Organic acids enhance the uptake of lead by wheat roots. Planta 225, 1483–1494 (2007). https://doi.org/10.1007/s00425-006-0433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0433-7

Keywords

Navigation