Skip to main content

Advertisement

Log in

Bovine mastitis prevention and control in the post-antibiotic era

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Mastitis is the most important disease in the dairy industry. Antibiotics are considered to be the first choice in the treatment of the disease. However, the problem of antibiotic residue and antimicrobial resistance, in addition to the impact of antibiotic abuse on public health, leads to many restrictions on uncontrolled antibiotic therapy in the dairy sector worldwide. Researchers have investigated novel therapeutic approaches to replace the use of antibiotics in mastitis control. These efforts, supported by the revolutionary development of nanotechnology, stem cell assays, molecular biological tools, and genomics, enabled the development of new approaches for mastitis-treatment and control. The present review discusses recent concepts to control mastitis such as breeding of mastitis-resistant dairy cows, the development of novel diagnostic and therapeutic tools, the application of communication technology as an educational and epidemiological tool, application of modern mastitis vaccines, cow drying protocols, teat disinfection, housing, and nutrition. These include the application of nanotechnology, stem cell technology, photodynamic and laser therapy or the use of traditional herbal medical plants, nutraceuticals, antibacterial peptides, bacteriocins, antibodies therapy, bacteriophages, phage lysins, and probiotics as alternatives to antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  • Aanensen, D.M., Huntley, D.M., Feil, E.J., and Spratt, B.G., 2009. EpiCollect: linking smartphones to web applications for epidemiology, ecology and community data collection, PloS one, 4, e6968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almeida, A.M.S., 2012. DNA markers for detection and infrasubspecific discrimination of mastitis-causing Streptococcaceae,

    Google Scholar 

  • Amir, L.H., Griffin, L., Cullinane, M., and Garland, S.M., 2016. Probiotics and mastitis: evidence-based marketing?, International breastfeeding journal, 11, 19

    Article  PubMed  PubMed Central  Google Scholar 

  • Angelopoulou, A., Warda, A.K., Hill, C., and Ross, R.P., 2019. Non-antibiotic microbial solutions for bovine mastitis–live biotherapeutics, bacteriophage, and phage lysins, Critical reviews in microbiology, 1-17

  • Ardjo, A.S., Triyono, L., and Sedyono, E., 2017. Developing dairy cattle information system for livestock farms in Indonesia. International Conference of Applied Science on Engineering, Business, Linguistics and Information Technology, 2017, (ICo-ASCNITECH, 321-327

  • Armas, F., Camperio, C., and Marianelli, C., 2017. In vitro assessment of the probiotic potential of Lactococcus lactis LMG 7930 against ruminant mastitis-causing pathogens, PloS one, 12, e0169543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arroyo, R., Martín, V., Maldonado, A., Jiménez, E., Fernández, L., and Rodríguez, J.M., 2010. Treatment of infectious mastitis during lactation: antibiotics versus oral administration of Lactobacilli isolated from breast milk, Clinical Infectious Diseases, 50, 1551-1558

    Article  CAS  PubMed  Google Scholar 

  • Ashraf, A., Imran, M., Yaqub, T., Tayyab, M., Shehzad, W., and Thomson, P.C., 2017. A novel multiplex PCR assay for simultaneous detection of nine clinically significant bacterial pathogens associated with bovine mastitis, Molecular and cellular probes, 33, 57-64

    Article  CAS  PubMed  Google Scholar 

  • Badami, S., Thanislass, J., Barathiraja, S., Anitha, T., Upadhyaya, I., and Kumar Mukhopadhyay, H., 2019. Identification of single nucleotide variations in the Toll-like receptor 9 (TLR9) gene and its association to mastitis susceptibility in dairy cattle, Biological Rhythm Research, 50, 887-896

    Article  CAS  Google Scholar 

  • Banos, G., Bramis, G., Bush, S., Clark, E., McCulloch, M., Smith, J., Schulze, G., Arsenos, G., Hume, D., and Psifidi, A., 2017. The genomic architecture of mastitis resistance in dairy sheep, BMC genomics, 18, 624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basdew, I., and Laing, M., 2011. Mini-Review: Biological control of bovine mastitis using bacteriophage therapy, Science against microbial pathogens: communicating current research and technological advances. World Scientific, Singapore, 386-393

    Google Scholar 

  • Beecher, C., Daly, M., Childs, S., Berry, D.P., Magee, D.A., McCarthy, T.V., and Giblin, L., 2010. Polymorphisms in bovine immune genes and their associations with somatic cell count and milk production in dairy cattle, BMC genetics, 11, 99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benedictus, L., Ravesloot, L., Poppe, K., Daemen, I., Boerhout, E., Van Strijp, J., Broere, F., Rutten, V., Koets, A., and Eisenberg, S., 2019. Immunization of young heifers with staphylococcal immune evasion proteins before natural exposure to Staphylococcus aureus induces a humoral immune response in serum and milk, BMC veterinary research, 15, 15

    Article  PubMed  PubMed Central  Google Scholar 

  • Beyene, T.J., Eshetu, A., Abdu, A., Wondimu, E., Beyi, A.F., Tufa, T.B., Ibrahim, S., and Revie, C.W., 2017. Assisting differential clinical diagnosis of cattle diseases using smartphone-based technology in low resource settings: a pilot study, BMC veterinary research, 13, 323

    Article  PubMed  PubMed Central  Google Scholar 

  • Beyene, T.J., Asfaw, F., Getachew, Y., Tufa, T.B., Collins, I., Beyi, A.F., and Revie, C.W., 2018. a smartphone-Based application improves the accuracy, completeness, and Timeliness of cattle Disease reporting and surveillance in ethiopia, Frontiers in Veterinary Science, 5, 2

  • Bhatt, V.D., Shah, T.M., Nauriyal, D.S., Kunjadia, A.P., and Joshi, C.G., 2014. Evaluation of a topical herbal drug for its in-vivo immunomodulatory effect on cytokines production and antibacterial activity in bovine subclinical mastitis, Ayu, 35, 198

    Article  PubMed  PubMed Central  Google Scholar 

  • Bond, D.M., Morris, J.M., and Nassar, N., 2017. Study protocol: evaluation of the probiotic Lactobacillus Fermentum CECT5716 for the prevention of mastitis in breastfeeding women: a randomised controlled trial, BMC pregnancy and childbirth, 17, 148

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouchard, D.S., Seridan, B., Saraoui, T., Rault, L., Germon, P., Gonzalez-Moreno, C., Nader-Macias, F.M., Baud, D., François, P., and Chuat, V., 2015. Lactic acid bacteria isolated from bovine mammary microbiota: potential allies against bovine mastitis, PloS one, 10, e0144831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bucher, B., and Bleul, U., 2019. Die Auswirkung des selektiven Trockenstellens auf die Eutergesundheit in Schweizer Milchviehbetrieben, Schweizer Archiv für Tierheilkunde, 161, 533-544

    Article  CAS  PubMed  Google Scholar 

  • Cahuascanco, B., Bahamonde, J., Huaman, O., Jervis, M., Cortez, J., Palomino, J., Escobar, A., Retamal, P., Torres, C.G., and Peralta, O.A., 2019. Bovine fetal mesenchymal stem cells exert antiproliferative effect against mastitis causing pathogen Staphylococcus aureus, Veterinary research, 50, 25

    Article  PubMed  PubMed Central  Google Scholar 

  • Castañeda Vázquez, H., Jäger, S., Wolter, W., Zschöck, M., Vazquez, C., and El-Sayed, A., 2013. Isolation and identification of main mastitis pathogens in Mexico, Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 65, 377-382

    Article  Google Scholar 

  • Chang, B.S., Moon, J.S., Kang, H.-M., Kim, Y.-I., Lee, H.-K., Kim, J.-D., Lee, B.-S., Koo, H.C., and Park, Y.H., 2008. Protective effects of recombinant staphylococcal enterotoxin type C mutant vaccine against experimental bovine infection by a strain of Staphylococcus aureus isolated from subclinical mastitis in dairy cattle, Vaccine, 26, 2081-2091

    Article  CAS  PubMed  Google Scholar 

  • Chau, N.H., Hien, D.T., Thuy, N.T., Ha, D.Q., Duong, D.T., Loan, T.T., Linh, P.T.D., Luu, T.X., Tan, N.D., and Van Tua, T., 2019. Formulation and application of nanosilver-infused cream in prevention and treatment of mastitis in dairy cows, Tap chi Sinh hoc, 41,

  • Chen, N., Wang, F., Yu, N., Gao, Y., Huang, J., Dang, R., Huang, Y., Lan, X., Lei, C., and Chen, H., 2018. Polymorphisms in MX2 gene are related with SCS in chinese dairy cows, Animal biotechnology, 29, 81-89

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Wang, Y., Yang, M., and Guo, M.-y. 2019. Allicin Inhibited Staphylococcus aureus-Induced Mastitis by Reducing Lipid Raft Stability via LxRα in Mice, Journal of agricultural and food chemistry, 67, 10863-10870

    Article  CAS  PubMed  Google Scholar 

  • Chinnappan, R., Al Attas, S., Kaman, W.E., Bikker, F.J., and Zourob, M., 2017. Development of magnetic nanoparticle based calorimetric assay for the detection of bovine mastitis in cow milk, Analytical biochemistry, 523, 58-64

    Article  CAS  PubMed  Google Scholar 

  • Cho, B.-W., Cha, C.-N., Lee, S.-M., Kim, M.-J., Park, J.-Y., Yoo, C.-Y., Son, S.-E., Kim, S., and Lee, H.-J., 2015. Therapeutic effect of oregano essential oil on subclinical bovine mastitis caused by Staphylococcus aureus and Escherichia coli, Korean Journal of Veterinary Research, 55, 253-257

    Article  Google Scholar 

  • Choimet, M., Hyoung-Mi, K., Jae-Min, O., Tourrette, A., and Drouet, C., 2016. Nanomedicine: interaction of biomimetic apatite colloidal nanoparticles with human blood components, Colloids and Surfaces B: Biointerfaces, 145, 87-94

    Article  CAS  PubMed  Google Scholar 

  • Cızmecı, S., Kose, A., Aydın, I., Sayın, Z., and Dınc, D., 2019. Determination of the effects of different dry cow therapy on udder health in dairy cows, Malaysian Journal of Veterinary Research, 10, 22-33

    Google Scholar 

  • Costa, C.R., Feitosa, M.L., Rocha, A.R., Bezerra, D.O., Leite, Y.K., Neto, N.M.A., Rodrigues, H.W., Junior, A.S., Silva, A.S., and Sarmento, J.L., 2019. Adipose stem cells in reparative goat mastitis mammary gland, PloS one, 14,

  • Côté-Gravel, J., and Malouin, F., 2019. Symposium review: Features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies, Journal of dairy science, 102, 4727-4740

    Article  PubMed  CAS  Google Scholar 

  • Crispie, F., Alonso-Gómez, M., O'Loughlin, C., Klostermann, K., Flynn, J., Arkins, S., Meaney, W., Ross, R.P., and Hill, C., 2008. Intramammary infusion of a live culture for treatment of bovine mastitis: effect of live lactococci on the mammary immune response, Journal of Dairy Research, 75, 374-384

    Article  CAS  PubMed  Google Scholar 

  • da Silva Junior, R.C., Campanholi, K.d.S.S., de Morais, F.A.P., dos Santos Pozza, M.S., dos Santos, G.T., Hioka, N., and Caetano, W., 2019. Development and applications of safranine-loaded Pluronic® F127 and P123 photoactive nanocarriers for prevention of bovine mastitis: In vitro and in vivo studies, Dyes and Pigments, 167, 204-215

  • Deb, R., Kumar, A., Chakraborty, S., Verma, A.K., Tiwari, R., Dhama, K., Singh, U., and Kumar, S., 2013. Trends in diagnosis and control of bovine mastitis: a review, Pak J Biol Sci, 16, 1653-1661

    Article  PubMed  Google Scholar 

  • Deb, R., Singh, U., Kumar, S., Kumar, A., Singh, R., Sengar, G., Mann, S., and Sharma, A., 2014. Genotypic to expression profiling of bovine calcium channel, voltage-dependent, alpha-2/delta subunit 1 gene, and their association with bovine mastitis among Frieswal (HFX Sahiwal) crossbred cattle of Indian origin, Animal biotechnology, 25, 128-138

    Article  CAS  PubMed  Google Scholar 

  • Deng, H., McShan, D., Zhang, Y., Sinha, S.S., Arslan, Z., Ray, P.C., and Yu, H., 2016. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics, Environmental science & technology, 50, 8840-8848

    Article  CAS  Google Scholar 

  • Dey, D., Sharma, B., and Mondal, S., 2019. Nutritional Approach to Prevent Mastitis of Dairy Cattle, Environment and Ecology, 37, 344-348

    Google Scholar 

  • Díaz-Ropero, M., Martin, R., Sierra, S., Lara-Villoslada, F., Rodriguez, J., Xaus, J., and Olivares, M., 2007. Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response, Journal of applied microbiology, 102, 337-343

    Article  PubMed  CAS  Google Scholar 

  • Dufour, S., Wellemans, V., Roy, J.-P., Lacasse, P., Ordonez-Iturriaga, A., and Francoz, D., 2019. Non-antimicrobial approaches at drying-off for treating and preventing intramammary infections in dairy cows. Part 1. Meta-analyses of efficacy of using an internal teat sealant without a concomitant antimicrobial treatment, Animal Health Research Reviews, 20, 86-97

    Article  PubMed  Google Scholar 

  • El-Sayed, A., and Kamel, M., 2018. Advanced applications of nanotechnology in veterinary medicine, Environmental Science and Pollution Research, 1-14

    Google Scholar 

  • El-Sayed, A., and Kamel, M., 2019a. Advances in nanomedical applications: diagnostic, therapeutic, immunization, and vaccine production, Environmental Science and Pollution Research, 1-14

  • El-Sayed, A., and Kamel, M., 2019b. Advances in nanomedical applications: diagnostic, therapeutic, immunization, and vaccine production, Environmental Science and Pollution Research, 27, 19200-19213

    Article  PubMed  CAS  Google Scholar 

  • El-Sayed, A., Awad, W., Abdou, N.-E., and Castañeda Vázquez, H., 2017. Molecular biological tools applied for identification of mastitis causing pathogens, International journal of veterinary science and medicine, 5, 89-97

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Sayed, A., Vázquez, H., Awad, W., and Abdou, N.-E., 2019. BIOLOGÍA MOLECULAR UTILIZADAS PARA EL DIAGNÓSTICO DE AGENTES. PATÓGENOS DE MASTITIS. 1 C AP I TU LO 11. T ÉCN IC AS D E. In La Mastitis Bovina, Editors Hugo Castañeda Vázquez, Wilfried Wolter and Martha Alicia Castañeda Vázquez. Primera edición digital, Mexico. 2019. ISBN 9 786078 490752 the book is available for download under https://drive.google.com/file/d/1SCTf0w18SY6c53YDek7ZRNV0AMJlXzF8/view,

  • Falentin, H., Rault, L., Nicolas, A., Bouchard, D.S., Lassalas, J., Lamberton, P., Aubry, J.-M., Marnet, P.-G., Le Loir, Y., and Even, S., 2016. Bovine teat microbiome analysis revealed reduced alpha diversity and significant changes in taxonomic profiles in quarters with a history of mastitis, Frontiers in microbiology, 7, 480-480

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan, J., Zeng, Z., Mai, K., Yang, Y., Feng, J., Bai, Y., Sun, B., Xie, Q., Tong, Y., and Ma, J., 2016. Preliminary treatment of bovine mastitis caused by Staphylococcus aureus, with trx-SA1, recombinant endolysin of S. aureus bacteriophage IME-SA1, Veterinary microbiology, 191, 65-71

    Article  CAS  PubMed  Google Scholar 

  • Fernández, L., Delgado, S., Herrero, H., Maldonado, A., and Rodriguez, J.M., 2008. The bacteriocin nisin, an effective agent for the treatment of staphylococcal mastitis during lactation, Journal of Human Lactation, 24, 311-316

    Article  PubMed  Google Scholar 

  • Fernández, L., Cárdenas, N., Arroyo, R., Manzano, S., Jiménez, E., Martín, V., and Rodríguez, J.M., 2015. Prevention of infectious mastitis by oral administration of Lactobacillus salivarius PS2 during late pregnancy, Clinical Infectious Diseases, 62, 568-573

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick, S.R., Garvey, M., Flynn, J., Jordan, K., and Gleeson, D., 2019. Are some teat disinfectant formulations more effective against specific bacteria isolated on teat skin than others?, Acta Veterinaria Scandinavica, 61, 21

    Article  PubMed  PubMed Central  Google Scholar 

  • Frola, I.D., Pellegrino, M.S., Magnano, G., Giraudo, J.A., Espeche, M.C., Nader-Macias, M.E., and Bogni, C.I., 2013. Histological examination of non-lactating bovine udders inoculated with Lactobacillus perolens CRL 1724, Journal of Dairy Research, 80, 28-35

    Article  CAS  PubMed  Google Scholar 

  • Frutis-Murillo, M., Sandoval-Carrillo, M.A., Alva-Murillo, N., Ochoa-Zarzosa, A., and López-Meza, J.E., 2019. Immunomodulatory molecules regulate adhesin gene expression in Staphylococcus aureus: Effect on bacterial internalization into bovine mammary epithelial cells, Microbial pathogenesis, 131, 15-21

    Article  CAS  PubMed  Google Scholar 

  • Geng, H., Zou, W., Zhang, M., Xu, L., Liu, F., Li, X., Wang, L., and Xu, Y., 2019. Evaluation of phage therapy in the treatment of Staphylococcus aureus-induced mastitis in mice, Folia microbiologica, 1-13

    Google Scholar 

  • Gill, J., Pacan, J., Carson, M., Leslie, K., Griffiths, M., and Sabour, P., 2006. Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle, Antimicrobial agents and chemotherapy, 50, 2912-2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godoy-Santos, F., Pinto, M.S., Barbosa, A.A., Brito, M.A., and Mantovani, H.C., 2019. Efficacy of a ruminal bacteriocin against pure and mixed cultures of bovine mastitis pathogens, Indian journal of microbiology, 59, 304-312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes, F., and Henriques, M., 2016. Control of bovine mastitis: old and recent therapeutic approaches, Current microbiology, 72, 377-382

    Article  CAS  PubMed  Google Scholar 

  • Gomes, F., Rodrigues, M.E., Martins, N., Ferreira, I.C., and Henriques, M., 2019. Phenolic Plant Extracts Versus Penicillin G: In Vitro Susceptibility of Staphylococcus aureus Isolated from Bovine Mastitis, Pharmaceuticals, 12, 128

    Article  CAS  PubMed Central  Google Scholar 

  • Gospodarek-Komkowska, E., 2019. Comparison of the effectiveness of dipping agents on bacteria causing mastitis in cattle, Annals of Agricultural and Environmental Medicine, 26, 39-45

    Article  PubMed  CAS  Google Scholar 

  • Gouvêa, F.L.R., Cardozo, L.L., Canal, J., Troncarelli, M.Z., and Pantoja, J.C.F., 2020. A descriptive study of teat morphology, milking machine characteristics, and milking practices in a sample of Brazilian dairy herds, Livestock Science, 241, 104196

    Article  Google Scholar 

  • Guan, R., Xu, W., Yuan, L., Wang, Y., Cui, X., and Hu, S., 2019. Immunomodulatory effect of thymopentin on lymphocytes from supramammary lymph nodes of dairy cows, Immunology letters, 216, 1-8

    Article  CAS  PubMed  Google Scholar 

  • Guccione, J., Pesce, A., Pascale, M., Salzano, C., Tedeschi, G., D'Andrea, L., De Rosa, A., and Ciaramella, P., 2017. Efficacy of a polyvalent mastitis vaccine against Staphylococcus aureus on a dairy Mediterranean buffalo farm: results of two clinical field trials, BMC veterinary research, 13, 29-29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hozyen, H., Ibrahim, E., Khairy, E., and El-Dek, S., 2019. Enhanced antibacterial activity of capped zinc oxide nanoparticles: A step towards the control of clinical bovine mastitis, Veterinary world, 12, 1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, S., Concha, C., Johannisson, A., Meglia, G., and Waller, K.P., 2001. Effect of subcutaneous injection of ginseng on cows with subclinical Staphylococcus aureus mastitis, Journal of Veterinary Medicine, series B, 48, 519-528

    Article  Google Scholar 

  • Hu, X., Li, S., Fu, Y., and Zhang, N., 2019a. Targeting gut microbiota as a possible therapy for mastitis, European Journal of Clinical Microbiology and Infectious Diseases, 38, 1409-1423

    Article  PubMed  Google Scholar 

  • Hu, X., Li, S., Fu, Y., and Zhang, N., 2019b. Targeting gut microbiota as a possible therapy for mastitis, European Journal of Clinical Microbiology & Infectious Diseases, 1-15

  • Hu, X., Guo, J., Zhao, C., Jiang, P., Maimai, T., Yanyi, L., Cao, Y., Fu, Y., and Zhang, N., 2020. The gut microbiota contributes to the development of Staphylococcus aureus-induced mastitis in mice, ISME J, 14, 1897-1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, T., Song, X., Jing, J., Zhao, K., Shen, Y., Zhang, X., and Yue, B., 2018. Chitosan-DNA nanoparticles enhanced the immunogenicity of multivalent DNA vaccination on mice against Trueperella pyogenes infection, Journal of nanobiotechnology, 16, 8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hurtado, J.A., Maldonado-Lobón, J.A., Díaz-Ropero, M.P., Flores-Rojas, K., Uberos, J., Leante, J.L., Affumicato, L., Couce, M.L., Garrido, J.M., and Olivares, M., 2017. Oral administration to nursing women of Lactobacillus fermentum CECT5716 prevents lactational mastitis development: A randomized controlled trial, Breastfeeding Medicine, 12, 202-209

    Article  PubMed Central  Google Scholar 

  • Ismail, Z.B., 2017. Mastitis vaccines in dairy cows: Recent developments and recommendations of application, Veterinary World, 10, 1057-1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwano, H., Inoue, Y., Takasago, T., Kobayashi, H., Furusawa, T., Taniguchi, K., Fujiki, J., Yokota, H., Usui, M., and Tanji, Y., 2018. Bacteriophage ΦSA012 has a broad host range against Staphylococcus aureus and effective lytic capacity in a mouse mastitis model, Biology, 7, 8

    Article  PubMed Central  CAS  Google Scholar 

  • Jampilek, J., Kos, J., and Kralova, K., 2019. Potential of nanomaterial applications in dietary supplements and foods for special medical purposes, Nanomaterials, 9, 296

    Article  CAS  PubMed Central  Google Scholar 

  • Kaithwas, G., Mukerjee, A., Kumar, P., and Majumdar, D.K., 2011. Linum usitatissimum (linseed/flaxseed) fixed oil: antimicrobial activity and efficacy in bovine mastitis, Inflammopharmacology, 19, 45-52

    Article  CAS  PubMed  Google Scholar 

  • Kalińska, A., Jaworski, S., Wierzbicki, M., and Gołębiewski, M., 2019. Silver and copper nanoparticles—an alternative in future mastitis treatment and prevention?, International journal of molecular sciences, 20, 1672

    Article  PubMed Central  CAS  Google Scholar 

  • Kamel, M., El-Sayed, A., and Vazquez, H.C., 2019. Foot-and-mouth disease vaccines: recent updates and future perspectives, Archives of virology, 164, 1501-1513

    Article  CAS  PubMed  Google Scholar 

  • Kaoud, H.A., 2015. Mini-Review: Alternative Therapies of Bovine Mastitis, European Journal of Academic Essays, 2, 23-26

    Google Scholar 

  • Keshvari, M., Khazali, H., Rokni, H., and Hosseini, A., 2016. The influence of administration of different doses of arginine and lysine coupled with zinc in the lactating ewes on the zinc concentration in milk, Iranian journal of veterinary research, 17, 190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keskin, A., Seyrek-İntas, K., Basri Tak, H., Tuna, B., Yilmazbas, G., Ozakin, C., and Ertas, S., 2007. Efficiency of polyvalent mastitis vaccine in lactating dairy cows, J Biol Environ Sci, 1, 87-92

    Google Scholar 

  • Khan, M.Z., Wang, D., Liu, L., Usman, T., Wen, H., Zhang, R., Liu, S., Shi, L., Mi, S., and Xiao, W., 2019. Significant genetic effects of JAK2 and DGAT1 mutations on milk fat content and mastitis resistance in Holsteins, Journal of Dairy Research, 86, 388-393

    Article  CAS  PubMed  Google Scholar 

  • Khazaie, F., and Ahmadi, E., 2021. Bovine subclinical mastitis-associated methicillin-resistant Staphylococcus aureus, selective genotyping and antimicrobial susceptibility profile of the isolates in Kurdistan province of Iran, Iranian Journal of Microbiology, 13, 65-73

    PubMed  PubMed Central  Google Scholar 

  • Kher, M.N., Sheth, N.R., and Bhatt, V.D., 2019. In vitro antibacterial evaluation of Terminalia chebula as an alternative of antibiotics against bovine subclinical mastitis, Animal biotechnology, 30, 151-158

    Article  CAS  PubMed  Google Scholar 

  • Kitching, M., Mathur, H., Flynn, J., Byrne, N., Dillon, P., Sayers, R., Rea, M.C., Hill, C., and Ross, R.P., 2019. A live bio-therapeutic for mastitis, containing Lactococcus lactis DPC3147 with comparable efficacy to antibiotic treatment, Frontiers in microbiology, 10, 2220

    Article  PubMed  PubMed Central  Google Scholar 

  • Klostermann, K., Crispie, F., Flynn, J., Ross, R.P., Hill, C., and Meaney, W., 2008. Intramammary infusion of a live culture of Lactococcus lactis for treatment of bovine mastitis: comparison with antibiotic treatment in field trials, Journal of Dairy Research, 75, 365-373

    Article  CAS  PubMed  Google Scholar 

  • Klostermann, K., Crispie, F., Flynn, J., Meaney, W.J., Ross, R.P., and Hill, C., 2010. Efficacy of a teat dip containing the bacteriocin lacticin 3147 to eliminate Gram-positive pathogens associated with bovine mastitis, Journal of Dairy Research, 77, 231-238

    Article  CAS  PubMed  Google Scholar 

  • Kommisrud, E., Østerås, O., and Vatn, T., 2005. Blood selenium associated with health and fertility in Norwegian dairy herds, Acta Veterinaria Scandinavica, 46, 229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kummee, P., Borisutpeth, M., Chanlun, S., Kanbutra, P., and Chanlun, A., 2015. Efficacy of guava leaf extract as alternative pre-milking teat dipping in reducing teat–end bacterial load of milking dairy cows, Int. J. Pharm. Pharm. Sci, 7, 434-438

    CAS  Google Scholar 

  • Kurz, J.P., Yang, Z., Weiss, R.B., Wilson, D.J., Rood, K.A., Liu, G.E., and Wang, Z., 2019. A genome-wide association study for mastitis resistance in phenotypically well-characterized Holstein dairy cattle using a selective genotyping approach, Immunogenetics, 71, 35-47

    Article  PubMed  Google Scholar 

  • Lange-Consiglio, A., Gusmara, C., Manfredi, E., Idda, A., Soggiu, A., Greco, V., Bonizzi, L., Cremonesi, F., and Zecconi, A., 2019. Antimicrobial effects of conditioned medium from amniotic progenitor cells in vitro and in vivo: toward tissue regenerative therapies for bovine mastitis, Frontiers in Veterinary Science, 6,

  • Ma, C., Sun, Z., Zeng, B., Huang, S., Zhao, J., Zhang, Y., Su, X., Xu, J., Wei, H., and Zhang, H., 2018. Cow-to-mouse fecal transplantations suggest intestinal microbiome as one cause of mastitis, Microbiome, 6, 200-200

    Article  PubMed  PubMed Central  Google Scholar 

  • Makau, D., VanLeeuwen, J., Gitau, G., Muraya, J., McKenna, S., Walton, C., and Wichtel, J., 2018. Effectiveness of using cellphone technology as a dairy management training tool for smallholder dairy farms in Kenya, Livestock Research for Rural Development, 30, 1-11

    Google Scholar 

  • Makau, D., VanLeeuwen, J., Gitau, G., Muraya, J., McKenna, S., Walton, C., and Wichtel, J., 2019. Effectiveness of using cellphone technology as a dairy management training tool for smallholder dairy farms in Kenya, Livestock Research for Rural Development, 11, Article 195

  • Malinowski, E., Krumrych, W., and Markiewicz, H., 2019. The effect of low intensity laser irradiation of inflamed udders on the efficacy of antibiotic treatment of clinical mastitis in dairy cows, Veterinaria italiana, 55, 253-260

    PubMed  Google Scholar 

  • Markoski, M.M., 2016. Advances in the use of stem cells in veterinary medicine: from basic research to clinical practice, Scientifica, 2016,

  • Martin, L.M., Stöcker, C., Sauerwein, H., Büscher, W., and Müller, U., 2018. Evaluation of inner teat morphology by using high-resolution ultrasound: Changes due to milking and establishment of measurement traits of the distal teat canal, Journal of dairy science, 101, 8417-8428

    Article  CAS  PubMed  Google Scholar 

  • Martins, S.A.M., Martins, V.C., Cardoso, F.A., Germano, J.H., Rodrigues, M.C., Duarte, C.M., Bexiga, R., De Freitas, S.C., and de Freitas, P.P., 2019. Biosensors for on-farm diagnosis of mastitis, Frontiers in bioengineering and biotechnology, 7, 186

    Article  PubMed  PubMed Central  Google Scholar 

  • Mein, G.A., 2012. The role of the milking machine in mastitis control, Veterinary Clinics of North America: Food Animal Practice, 28, 307-320

    Google Scholar 

  • Mella, A., Ulloa, F., Valdés, I., Olivares, N., Ceballos, A., and Kruze, J., 2017. Evaluation of a new vaccine against Staphylococcus aureus mastitis in dairy herds of southern Chile. I. Challenge trial, Austral journal of veterinary sciences, 49, 149-160

    Article  Google Scholar 

  • Merrill, C., Ensermu, D., Abdi, R., Gillespie, B., Vaughn, J., Headrick, S., Hash, K., Walker, T., Stone, E., and Dego, O.K., 2019. Immunological responses and evaluation of the protection in dairy cows vaccinated with staphylococcal surface proteins, Veterinary immunology and immunopathology, 214, 109890

    Article  CAS  PubMed  Google Scholar 

  • Michael, B.D., and Geleta, D., 2013. Development of ClickClinica: a novel smartphone application to generate real-time global disease surveillance and clinical practice data, BMC medical informatics and decision making, 13, 70

    Article  PubMed  PubMed Central  Google Scholar 

  • Miseikiene, R., Tusas, S., Biziene, R., Kerziene, S., Miciński, J., and Matusevicius, P., 2020. Influence of teat disinfection with iodine preparation on bacterial contamination of teats, hygenic quality and content of iodine in milk, Journal of Elementology, 25, 225-236

    Google Scholar 

  • Mubarack, H.M., Doss, A., Dhanabalan, R., and Venkataswamy, R., 2011. In-vitro antimicrobial effects of some selected plants against bovine mastitis pathogens, Hygeia JD Med, 3, 71-75

    Google Scholar 

  • Mulligan, F., O Grady, L., Rice, D., and Doherty, M., 2006. Production diseases of the transition cow: Milk fever and subclinical hypocalcaemia, Irish Veterinary Journal, 59, 697

  • Mushtaq, S., Shah, A.M., Shah, A., Lone, S.A., Hussain, A., Hassan, Q.P., and Ali, M.N., 2018. Bovine mastitis: An appraisal of its alternative herbal cure, Microbial pathogenesis, 114, 357-361

    Article  PubMed  Google Scholar 

  • Nagasawa, Y., Kiku, Y., Sugawara, K., Hirose, A., Kai, C., Kitano, N., Takahashi, T., Nochi, T., Aso, H., and Sawada, S.-i, 2019. Staphylococcus aureus-specific IgA antibody in milk suppresses the multiplication of S. aureus in infected bovine udder, BMC veterinary research, 15, 286

  • Neethirajan, S., 2017. Recent advances in wearable sensors for animal health management, Sensing and Bio-Sensing Research, 12, 15-29

    Article  Google Scholar 

  • Nirala, N.R., Harel, Y., Lellouche, J.-P., and Shtenberg, G., 2020. Ultrasensitive haptoglobin biomarker detection based on amplified chemiluminescence of magnetite nanoparticles, Journal of nanobiotechnology, 18, 1-10

    Article  CAS  Google Scholar 

  • Odorčić, M., Rasmussen, M.D., Paulrud, C.O., and Bruckmaier, R.M., 2019. Review: Milking machine settings, teat condition and milking efficiency in dairy cows, Animal, 13, s94-s99

    Article  PubMed  Google Scholar 

  • Oget, C., Allain, C., Portes, D., Foucras, G., Stella, A., Astruc, J.-M., Sarry, J., Tosser-Klopp, G., and Rupp, R., 2019. A validation study of loci associated with mastitis resistance in two French dairy sheep breeds, Genetics Selection Evolution, 51, 5

    Article  Google Scholar 

  • Orellano, M.S., Isaac, P., Breser, M.L., Bohl, L.P., Conesa, A., Falcone, R.D., and Porporatto, C., 2019. Chitosan nanoparticles enhance the antibacterial activity of the native polymer against bovine mastitis pathogens, Carbohydrate polymers, 213, 1-9

    Article  CAS  PubMed  Google Scholar 

  • O'Rourke, D., 2009. Nutrition and udder health in dairy cows: a review, Irish Veterinary Journal, 62, S15

    Article  PubMed  PubMed Central  Google Scholar 

  • Pal, A., Sharma, A., Bhattacharya, T., Chatterjee, P., and Chakravarty, A., 2011. Molecular characterization and SNP detection of CD14 gene of crossbred cattle, Molecular biology international, 2011,

    Google Scholar 

  • Pieterse, R., and Todorov, S.D., 2010. Bacteriocins: exploring alternatives to antibiotics in mastitis treatment, Brazilian Journal of Microbiology, 41, 542-562

    Article  PubMed  PubMed Central  Google Scholar 

  • Poindexter, M.B., Kweh, M.F., Zimpel, R., Zuniga, J., Lopera, C., Zenobi, M.G., Jiang, Y., Engstrom, M., Celi, P., and Santos, J.E., 2020. Feeding supplemental 25-hydroxyvitamin D3 increases serum mineral concentrations and alters mammary immunity of lactating dairy cows, Journal of dairy science, 103, 805-822

    Article  CAS  PubMed  Google Scholar 

  • Poltronieri, P., Mezzolla, V., Primiceri, E., and Maruccio, G., 2014. Biosensors for the detection of food pathogens, Foods, 3, 511-526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prajapati, B., Gupta, J., Pandey, D., Parmar, G., and Chaudhari, J., 2017. Molecular markers for resistance against infectious diseases of economic importance, Veterinary world, 10, 112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Procópio, T.F., Moura, M.C., Bento, E.F., Soares, T., Coelho, L.C., Bezerra, R.P., Mota, R.A., Porto, A.L.F., Paiva, P.M., and Napoleão, T.H., 2019. Looking for alternative treatments for bovine and caprine mastitis: Evaluation of the potential of Calliandra surinamensis leaf pinnulae lectin (CasuL), both alone and in combination with antibiotics, MicrobiologyOpen, e869

    Google Scholar 

  • Reddy, K.M., Feris, K., Bell, J., Wingett, D.G., Hanley, C., and Punnoose, A., 2007. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems, Applied physics letters, 90, 213902

    Article  CAS  Google Scholar 

  • Reinoso, E., El-Sayed, A., Lämmler, C., Bogni, C., and Zschöck, M., 2008. Genotyping of Staphylococcus aureus isolated from humans, bovine subclinical mastitis and food samples in Argentina, Microbiological Research, 163, 314-322

    Article  CAS  PubMed  Google Scholar 

  • Romero, G., Peris, C., Fthenakis, G.C., and Diaz, J.R., 2020. Effects of machine milking on udder health in dairy ewes, Small Ruminant Research, 188, 106096

    Article  Google Scholar 

  • Rupp, R., and Boichard, D., 2003. Genetics of resistance to mastitis in dairy cattle, Veterinary research, 34, 671-688

    Article  PubMed  Google Scholar 

  • Sahle, S., 2002. A study on medicinal plants used in the traditional veterinary practices for treatment of bovine mastitis in selected sites of Central Ethiopia, Faculty of Veterinary Medicine, Addis Ababa University, DVM Thesis,

    Google Scholar 

  • Sathiyabarathi, M., Jeyakumar, S., Manimaran, A., Jayaprakash, G., Pushpadass, H.A., Sivaram, M., Ramesha, K.P., Das, D.N., Kataktalware, M.A., Prakash, M.A., and Kumar, R.D., 2016. Infrared thermography: A potential noninvasive tool to monitor udder health status in dairy cows, Veterinary World, 9, 1075-1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholte, C.M., 2019. Antibiotic Alternatives for Treatment of Mastitis in Dairy Cattle,

    Google Scholar 

  • Selvan, A.S., Gupta, I., Verma, A., Chaudhari, M., and Magotra, A., 2016. Molecular characterization and combined genotype association study of bovine cluster of differentiation 14 gene with clinical mastitis in crossbred dairy cattle, Veterinary world, 9, 680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, N., and Jeong, D.K., 2013. Stem cell research: a novel boulevard towards improved bovine mastitis management, International journal of biological sciences, 9, 818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma, N., Huynh, D.L., Kim, S.W., Ghosh, M., Sodhi, S.S., Singh, A.K., Kim, N.E., Lee, S.J., Hussain, K., Oh, S.J., and Jeong, D.K., 2017. A PiggyBac mediated approach for lactoferricin gene transfer in bovine mammary epithelial stem cells for management of bovine mastitis, Oncotarget, 8, 104272-104285

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharun, K., Dhama, K., Tiwari, R., Gugjoo, M.B., Iqbal Yatoo, M., Patel, S.K., Pathak, M., Karthik, K., Khurana, S.K., Singh, R., Puvvala, B., Amarpal, Singh, R., Singh, K.P., and Chaicumpa, W., 2021. Advances in therapeutic and managemental approaches of bovine mastitis: A comprehensive review, Veterinary Quarterly, 1-58

  • Silva, D.M., Costa, P.A., Ribon, A.O., Purgato, G.A., Gaspar, D.-M., and Diaz, M.A., 2019. Plant Extracts Display Synergism with Different Classes of Antibiotics, Anais da Academia Brasileira de Ciências, 91,

  • Singh, R., Saini, S., Ansari, S., Jamwal, S., and Malakar, D., 2020. 220 Exploring the use of mesenchymal stem cells for treatment of mastitis and metritis in cattle, Reproduction, Fertility and Development, 32, 238-238

    Article  Google Scholar 

  • Sjostrom, L., Heins, B.J., Endres, M.I., Moon, R., and Sorge, U., 2019. Effects of winter housing system on hygiene, udder health, frostbite, and rumination of dairy cows, Journal of dairy science, 102, 10606-10615

    Article  CAS  PubMed  Google Scholar 

  • Sserunkuma, P., McGaw, L., Nsahlai, I., and Van Staden, J., 2017. Selected southern African medicinal plants with low cytotoxicity and good activity against bovine mastitis pathogens, South African journal of botany, 111, 242-247

    Article  Google Scholar 

  • Steeneveld, W., Vernooij, J., and Hogeveen, H., 2015. Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction, Journal of dairy science, 98, 3896-3905

    Article  CAS  PubMed  Google Scholar 

  • Sukumar, D., Vanan, T.T., Thennarasu, A., and Kumar, T.S., 2019. The Effect of TEAT PROTECT spray and potassium permanganate teat dip in curing subclinical mastitis in crossbred cows of Villupuram district of Tamilnadu, Journal of Applied and Natural Science, 11, 738-742

    Article  Google Scholar 

  • Sun, J., Aswath, K., Schroeder, S.G., Lippolis, J.D., Reinhardt, T.A., and Sonstegard, T.S., 2015. MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection, BMC genomics, 16, 806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szyda, J., Mielczarek, M., Frąszczak, M., Minozzi, G., Williams, J., and Wojdak-Maksymiec, K., 2019. The genetic background of clinical mastitis in Holstein-Friesian cattle, animal, 1-8

    Google Scholar 

  • Tashakkori, N., Khoramian, B., Moghadam, M.F., Heidarpour, M., Mashayekhi, K., and Farzaneh, N., 2019. Evaluating the effectiveness of two bovine mastitis vaccines and their influences on oxidant and antioxidant capacities of milk, Tropical Animal Health and Production, 1-9

  • Twomey, D., Wheelock, A., Flynn, J., Meaney, W., Hill, C., and Ross, R., 2000. Protection against Staphylococcus aureus mastitis in dairy cows using a bismuth-based teat seal containing the bacteriocin, lacticin 3147, Journal of dairy science, 83, 1981-1988

    Article  CAS  PubMed  Google Scholar 

  • Verma, A.K., and Nauriyal, D., 2009. Therapeutic potential of a topical herbal gel against bovine subclinical mastitis, Indian Journal of Animal Sciences, 79, 275-277

    Google Scholar 

  • Vissio, C., Mella, A., Amestica, L., and Pol, M., 2019. Noninferiority study evaluating the efficacy of a teat disinfectant containing copper and zinc for prevention of naturally occurring intramammary infections in an automatic milking system, Journal of dairy science,

  • Wang, X., Ma, P., Liu, J., Zhang, Q., Zhang, Y., Ding, X., Jiang, L., Wang, Y., Zhang, Y., and Sun, D., 2015. Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility, BMC genetics, 16, 111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, D., Wei, Y., Shi, L., Khan, M.Z., Fan, L., Wang, Y., and Yu, Y., 2019a. Genome-wide DNA methylation pattern in a mouse model reveals two novel genes associated with Staphylococcus aureus mastitis, Asian-Australasian journal of animal sciences,

    Google Scholar 

  • Wang, M., Wang, T., Guan, Y., Wang, F., and Zhu, J., 2019b. The preparation and therapeutic roles of scFv-Fc antibody against Staphylococcus aureus infection to control bovine mastitis, Applied microbiology and biotechnology, 103, 1703-1712

    Article  CAS  PubMed  Google Scholar 

  • Yang, S.-C., Lin, C.-H., Sung, C.T., and Fang, J.-Y., 2014. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals, Frontiers in microbiology, 5, 241

    PubMed  PubMed Central  Google Scholar 

  • Yang, W.-T., Ke, C.-Y., Wu, W.-T., Lee, R.-P., and Tseng, Y.-H., 2019. Effective Treatment of Bovine Mastitis with Intramammary Infusion of Angelica dahurica and Rheum officinale Extracts, Evidence-Based Complementary and Alternative Medicine, 2019,

  • Yoshida, T., Furuta, H., Kondo, Y., and Mukoyama, H., 2012. Association of BoLA-DRB3 alleles with mastitis resistance and susceptibility in Japanese Holstein cows, Animal science journal, 83, 359-366

    Article  CAS  PubMed  Google Scholar 

  • Youngerman, S., Saxton, A., Oliver, S., and Pighetti, G., 2004. Association of CXCR2 polymorphisms with subclinical and clinical mastitis in dairy cattle, Journal of dairy science, 87, 2442-2448

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., Ren, Y., Xi, X., Huang, W., and Zhang, H., 2017. A novel lactobacilli-based teat disinfectant for improving bacterial communities in the milks of cow teats with subclinical mastitis, Frontiers in microbiology, 8, 1782

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan, Z.R., Li, J., Liu, L., Zhang, L.P., Zhang, L.M., Chen, C., Chen, X.J., Gao, X., Li, J.Y., and Chen, J.B., 2011. Single nucleotide polymorphism of CACNA2D1 gene and its association with milk somatic cell score in cattle, Molecular biology reports, 38, 5179-5183

    Article  CAS  PubMed  Google Scholar 

  • Yuan, Z., Chu, G., Dan, Y., Li, J., Zhang, L., Gao, X., Gao, H., Li, J., Xu, S., and Liu, Z., 2012. BRCA1: a new candidate gene for bovine mastitis and its association analysis between single nucleotide polymorphisms and milk somatic cell score, Molecular biology reports, 39, 6625-6631

    Article  CAS  PubMed  Google Scholar 

  • Yuan, Y.-G., Peng, Q.-L., and Gurunathan, S., 2017. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: An alternative approach for antimicrobial therapy, International journal of molecular sciences, 18, 569

    Article  PubMed Central  CAS  Google Scholar 

  • Zhou, K., Wang, X., Chen, D., Yuan, Y., Wang, S., Li, C., Yan, Y., Liu, Q., Shao, L., and Huang, L., 2019. Enhanced Treatment Effects of Tilmicosin Against Staphylococcus aureus Cow Mastitis by Self-Assembly Sodium Alginate-Chitosan Nanogel, Pharmaceutics, 11, 524

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mohamed Kamel and Amr El-Sayed wrote and drafted the manuscript, critically revised the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Mohamed Kamel.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Nanotechnology use in mastitis diagnosis and control

2. Alternative therapeutic concepts as replacers to antibiotics

3. Improvement of management concepts and mastitis control

4. Vaccines and immunomodulators lead to mastitis control

5. Mastitis-resistant cows for mastitis control

This article belongs to the Topical Collection Dairy Science and Health in the Tropics

Mohamed Kamel and Amr El-Sayed contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sayed, A., Kamel, M. Bovine mastitis prevention and control in the post-antibiotic era. Trop Anim Health Prod 53, 236 (2021). https://doi.org/10.1007/s11250-021-02680-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-021-02680-9

Keywords

Navigation