Skip to main content
Log in

Atomic Friction Modulation on the Reconstructed Au(111) Surface

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Friction between a nanoscale tip and a reconstructed Au(111) surface is investigated both by atomic force microscopy (AFM) and molecular statics calculations. Lateral force AFM images exhibit atomic lattice stick–slip behavior with a superstructure corresponding to the herringbone reconstruction pattern. However, the superstructure contrast is not primarily due to variations in the local frictional dissipation (which corresponds to the local width of the friction loop). Rather, the contrast occurs primarily because the local centerline position of the friction loop is periodically shifted from its usual value of zero. Qualitatively, similar behavior is reproduced in atomistic simulations of an AFM tip sliding on the reconstructed Au(111) substrate. In both simulations and experiments, this centerline modulation effect is not observed on unreconstructed surfaces. Similarly, using a topographically flat surface as a hypothetical control system, the simulations show that the centerline modulation is not caused by variations in the reconstructed surface’s topography. Rather, we attribute it to the long-range variation of the local average value of the tip-sample interaction potential that arises from the surface reconstruction. In other words, surface atoms located at unfavorable sites, i.e., in the transition between face-centered-cubic (FCC) and hexagonal-close-packed (HCP) regions, have a higher surface free energy. This leads to a varying conservative force which locally shifts the centerline position of the friction force. This demonstrates that stick–slip behavior in AFM can serve as a rather sensitive probe of the local energetics of surface atoms, with an attainable lateral spatial resolution of a few nanometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mate, C.M.: Tribology on the Small Scale: A Bottom up Approach to Friction Lubrication and Wear. Oxford University Press, New York (2008)

    Google Scholar 

  2. Prandtl, L.: Ein gedankenmodell zur kinetischen theorie der festen körper. Z. Angew. Math. Mech. 8(2), 85–106 (1928)

    Article  Google Scholar 

  3. Tomlinson, G.A.: A molecular theory of friction. Philos. Mag. Series 7 7(46), 905–939 (1929)

    CAS  Google Scholar 

  4. Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59(17), 1942–1945 (1987)

    Article  CAS  Google Scholar 

  5. Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92(12), 126101 (2004)

    Article  Google Scholar 

  6. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92(13), 134301 (2004)

    Article  CAS  Google Scholar 

  7. Socoliuc, A., Gnecco, E., Maier, S., et al.: Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313(5784), 207–210 (2006)

    Article  CAS  Google Scholar 

  8. Medyanik, S.N., Liu, W.K., Sung, I.H., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97(13), 136106 (2006)

    Article  Google Scholar 

  9. Roth, R., Glatzel, T., Steiner, P., Gnecco, E., Baratoff, A., Meyer, E.: Multiple slips in atomic-scale friction: an indicator for the lateral contact damping. Tribol. Lett. 39(1), 63–69 (2010)

    Article  CAS  Google Scholar 

  10. Conley, W.G., Raman, A., Krousgrill, C.M.: Nonlinear dynamics in tomlinson’s model for atomic-scale friction and friction force microscopy. J. Appl. Phys. 98(5), 10 (2005)

    Article  Google Scholar 

  11. Morita, S., Fujisawa, S., Sugawara, Y.: Spatially quantized friction with a lattice periodicity. Surf. Sci. Rep. 23(1), 1–41 (1996)

    Article  CAS  Google Scholar 

  12. Filleter, T., McChesney, J.L., Bostwick, A., et al.: Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 102(8), 086102 (2009)

    Article  CAS  Google Scholar 

  13. Lee, C., Li, Q.Y., Kalb, W., et al.: Frictional characteristics of atomically thin sheets. Science 328(5974), 76–80 (2010)

    Article  CAS  Google Scholar 

  14. Lio, A., Charych, D.H., Salmeron, M.: Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiols on gold and alkylsilanes on mica. J. Phys. Chem. B 101(19), 3800–3805 (1997)

    Article  CAS  Google Scholar 

  15. Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97(4), 1163–1194 (1997)

    Article  CAS  Google Scholar 

  16. Dedkov, G.V.: Experimental and theoretical aspects of the modern nanotribology. Phys. Status Solidi A: Appl. Res. 179(1), 3–75 (2000)

    Article  CAS  Google Scholar 

  17. Gnecco, E., Bennewitz, R., Gyalog, T., Meyer, E.: Friction experiments on the nanometre scale. J. Phys. Condes. Matter 13(31), R619–R642 (2001)

    Article  CAS  Google Scholar 

  18. Steele, W.A.: Physical interaction of gases with crystalline solids. 1. Gas-solid energies and properties of isolated adsorbed atoms. Surf. Sci. 36(1), 317–352 (1973)

    Article  CAS  Google Scholar 

  19. Filleter, T., Bennewitz, R.: Structural and frictional properties of graphene films on SiC(0001) studied by atomic force microscopy. Phys. Rev. B 81(15), 155412 (2010)

    Google Scholar 

  20. Steiner, P., Gnecco, E., Filleter, T., et al.: Atomic friction investigations on ordered superstructures. Tribol. Lett. 39(3), 321–327 (2010)

    Article  CAS  Google Scholar 

  21. Maier, S., Gnecco, E., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale friction modulated by a buried interface: combined atomic and friction force microscopy experiments. Phys. Rev. B78(4), 5 (2008)

    Google Scholar 

  22. Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67(9), 3298–3306 (1996)

    Article  CAS  Google Scholar 

  23. Bluhm, H., Schwarz, U.D., Meyer, K.P.: Anisotropy sliding friction on the triglycine sulfate(010) surface. Appl. Phys. A: Mater. Sci. Process. 61(5), 525–533 (1995)

    Article  Google Scholar 

  24. Liley, M., Gourdon, D., Stamou, D., et al.: Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt. Science 280(5361), 273–275 (1998)

    Article  CAS  Google Scholar 

  25. Hisada, K., Knobler, C.M.: Microscopic friction anisotropy and asymmetry related to the molecular tilt azimuth in a monolayer of glycerol ester. Colloid. Surf. A: Physicochem. Eng. Asp. 198, 21–30 (2002)

    Article  Google Scholar 

  26. Maier, S., Sang, Y., Filleter, T., et al.: Fluctuations and jump dynamics in atomic friction experiments. Phys. Rev. 72(B24), 9 (2005)

    Google Scholar 

  27. Negri, C., Manini, N., Vanossi, A., Santoro, G.E., Tosatti, E.: AFM dissipation topography of soliton superstructures in adsorbed overlayers. Phys. Rev. B81(4), 5 (2010)

    Google Scholar 

  28. Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D: Appl. Phys. 41(12), 123001 (2008)

    Article  Google Scholar 

  29. Li, Q.Y., Dong, Y.L., Perez, D., Martini, A., Carpick, R.W.: Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys. Rev. Lett. 106(12), 4 (2011)

    Google Scholar 

  30. Nogues, C., Wanunu, M.: A rapid approach to reproducible, atomically flat gold films on mica. Surf. Sci. 573(3), L383–L389 (2004)

    Article  CAS  Google Scholar 

  31. Harten, U., Lahee, A.M., Toennies, J.P., Woll, C.: Observation of a soliton reconstruction of Au(111) by high-resolution helium-atom diffraction. Phys. Rev. Lett. 54(24), 2619–2622 (1985)

    Article  CAS  Google Scholar 

  32. Woll, C., Chiang, S., Wilson, R.J., Lippel, P.H.: Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy. Phys. Rev. B39(11), 7988–7991 (1989)

    Google Scholar 

  33. Narasimhan, S., Vanderbilt, D.: Elastic stress domains and the herringbone reconstruction on Au(111). Phys. Rev. Lett. 69(10), 1564–1567 (1992)

    Article  CAS  Google Scholar 

  34. Nie, H.Y., Mizutani, W., Tokumoto, H.: Au(111) reconstruction observed by atomic-force microscopy with lateral force detection. Surf. Sci. 311(1–2), L649–L654 (1994)

    Article  CAS  Google Scholar 

  35. Voter, A.F.: Los alamos unclassified technical report la-ur-93-3901 (1993)

  36. Haftel, M.I.: Surface reconstruction of platinum and gold and the embedded-atom model. Phys. Rev. B 48(4), 2611–2622 (1993)

    Article  CAS  Google Scholar 

  37. Dong, Y.L., Perez, D., Voter, A.F., Martini, A.: The roles of statics and dynamics in determining transitions between atomic friction regimes. Tribol. Lett. 42(1), 99–107 (2011)

    Article  Google Scholar 

  38. Muser, M.H., Urbakh, M., Robbins, M.O.: Statistical mechanics of static and low-velocity kinetic friction. Adv. Chem. Phys. 126, 187–272 (2003)

    Article  Google Scholar 

  39. Shimizu, J., Eda, H., Yoritsune, M., Ohmura, E.: Molecular dynamics simulation of friction on the atomic scale. Nanotechnology 9(2), 118–123 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Science Foundation under grants CMMI-0758604 & 0800154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunyang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Dong, Y., Martini, A. et al. Atomic Friction Modulation on the Reconstructed Au(111) Surface. Tribol Lett 43, 369–378 (2011). https://doi.org/10.1007/s11249-011-9824-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9824-4

Keywords

Navigation