Skip to main content
Log in

Multiple Slips in Atomic-Scale Friction: An Indicator for the Lateral Contact Damping

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The occurrence of multiple jumps in 2D atomic-scale friction measurements is used to quantify the viscous damping accompanying the stick–slip motion of a sharp tip in contact with a NaCl(001) surface. Multiple slips are observed without apparent wear for normal forces between 13 and 91 nN. For scans parallel to [100] directions, the tip jumps between minima of the substrate corrugation potential in a zigzag fashion. An algorithm is applied to determine histograms of lateral force jumps which characterize multiple slips. The same algorithm is used to classify multiple slips occurring in calculated lateral force maps. Comparisons between simulations and experiments indicate that the nanometer-sized contact is underdamped at intermediate loads (13–26 nN) and becomes slightly overdamped at higher loads. The proposed procedure is a novel way to estimate the lateral contact damping which plays an important role in the interpretation of measurements of the velocity and temperature dependence of friction, of slip duration, and of the reduction of friction by applied perpendicular or parallel oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mate, M., McClelland, G., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942 (1987)

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Fujisawa, S., Sugawara, Y., Ito, S., Mishima, S., Okada, T., Morita, S.: The two-dimensional stick-slip phenomenon with atomic resolution. Nanotechnology 4, 138 (1993)

    Article  ADS  Google Scholar 

  3. Tomlinson, G.: A molecular theory of friction. Philos. Mag. 7, 905 (1929)

    CAS  Google Scholar 

  4. Johnson, K., Woodhouse, J.: Stick-slip motion in the atomic force microscope. Tribol. Lett. 5, 155 (1998)

    Article  CAS  Google Scholar 

  5. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Gyalog, T., Gnecco, E., Meyer, E.: Stick-slip motion on the atomic scale. In: Gnecco, E., Meyer, E. (eds.) Fundamentals of Friction and Wear on the Nanoscale, pp. 101–115. Springer-Verlag, Berlin (2007)

    Chapter  Google Scholar 

  7. Lifshits, A.I., Shluger, A.L.: Self-lubrication in scanning-force-microscope image formation on ionic surfaces. Phys. Rev. B 56, 12482 (1997)

    Article  ADS  Google Scholar 

  8. Fusco, C., Fasolino, A.: Velocity dependence of atomic-scale friction: a comparative study of the one- and two-dimensional Tomlinson model. Phys. Rev. B 71, 045413 (2005)

    Article  ADS  Google Scholar 

  9. Nakamura, J., Wakunami, S., Natori, A.: Double-slip mechanism in atomic-scale friction: Tomlinson model at finite temperatures. Phys. Rev. B 72, 235415 (2005)

    Article  ADS  Google Scholar 

  10. Tshiprut, Z., Zelner, S., Urbakh, M.: Temperature-induced enhancement of nanoscale friction. Phys. Rev. Lett. 102, 136102 (2009)

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Medyanik, S.N., Liu, W., Sung, I.-H., Carpick, R.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97, 136106 (2006)

    Article  PubMed  ADS  Google Scholar 

  12. Persson, B.N.J.: Sliding Friction. Springer-Verlag, Berlin (2000)

    MATH  Google Scholar 

  13. Persson, B.N.J., Carbone, G., Samoilov, V.N., Siveback, I.M., Tartaglino, U., Volokitin, A.I., Yang, C.: Contact mechanics, friction and adhesion with application to quasicrystals. In: Gnecco, E., Meyer, E. (eds.) Fundamentals of Friction and Wear on the Nanoscale, pp. 269–306. Springer-Verlag, Berlin (2007)

    Chapter  Google Scholar 

  14. Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116 (2009)

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Hölscher, H., Schwarz, U.D., Wiesendanger, R.: Simulation of a scanned tip on a NaF(001) surface in friction force microscopy. Europhys. Lett. 36, 19 (1996)

    Article  ADS  Google Scholar 

  16. Sang, Y., Dubé, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. B 87, 174301 (2001)

    Article  CAS  ADS  Google Scholar 

  17. Reimann, P., Evstigneev, M.: Description of atomic friction as forced brownian motion. N. J. Phys. 7, 25 (2005)

    Article  Google Scholar 

  18. Maier S., Sang Y., Filleter T., Grant M., Bennewitz R., Gnecco E., Meyer E.: Fluctuations and jump dynamics in atomic friction experiments. Phys. Rev. B 72, 245418 (2005)

    Article  ADS  Google Scholar 

  19. Socoliuc, A., Gnecco, E., Maier, S., Pfeiffer, O., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313, 207 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Steiner, P., Roth, R., Gnecco, E., Baratoff, A., Maier, S., Glatzel, T., Meyer, E.: Two-dimensional simulation of superlubricity on NaCl and highly oriented pyrolytic graphite. Phys. Rev. B 79, 045414 (2009)

    Article  ADS  Google Scholar 

  21. Tshiprut, Z., Filippov, A., and Urbakh, M.: The effect of lateral vibrations on transport and friction in nanoscale contacts. Tribol. Int. 40, 967 (2007)

    Article  CAS  Google Scholar 

  22. Bilas, P., Romana, L., Bade, F., Delbe, K., Mansot, J.: Speed and atmosphere influences on nanotribological properties of NbSe2. Tribol. Lett. 34, 41 (2008)

    Article  Google Scholar 

  23. Yabing, Q., Park, J.Y., Hendriksen, B.L.M., Ogletree, D.F., Salmeron, M.: Electronic contribution to friction on GaAs: an atomic force microscope study. Phys. Rev. B 77, 184105 (2008)

    Article  ADS  Google Scholar 

  24. Reinstädtler, M., Rabe, U., Scherer, V., Hartmann, U., Goldade, A., Bhushan, B., Arnold, W.: On the nanoscale measurement of friction using atomic-force microscope cantilever torsional resonances. Appl. Phys. Lett. 82, 2604 (2003)

    Article  ADS  Google Scholar 

  25. Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, Ch., Bammerlin, M., Meyer, E., Güntherodt, H.-J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Wyder, U., Baratoff, A., Meyer, E., Kantorovich, L.N., David, J., Maier, S., Filleter, T., Bennewitz, R.: Interpretation of atomic friction experiments based on atomistic simulations. J. Vac. Sci. Technol. B 25, 1547 (2007)

    Article  CAS  Google Scholar 

  27. Allen, M., Tildesley, D.: Computer Simulations of Liquids. Oxford Univeristy Press, Oxford (1991)

    Google Scholar 

  28. Howald, L., Meyer, E., Lüthi, R., Haefke, H., Overney, R., Rudin, H., Güntherodt, H.-J.: Multifunctional probe microscope for facile operation in ultrahigh vacuum. Appl. Phys. Lett. 63, 117 (1993)

    Article  CAS  ADS  Google Scholar 

  29. Schwarz, U., Koster, P., Wiesendanger, R.: Quantitative analysis of lateral force microscopy experiments. Rev. Sci. Instrum. 67, 2560 (1996)

    Article  CAS  ADS  Google Scholar 

  30. Krylov, S.Yu., Dijksman, J., van Loo, W., Frenken, J.M.: Stick-slip motion in spite of a slippery contact: Do we get what we see in atomic friction? Phys. Rev. Lett. 97, 166103 (2006)

    Article  PubMed  ADS  Google Scholar 

  31. Krylov, S.Yu., Frenken, J.M.: Thermal contact delocalization in atomic scale friction: a multitude of friction regimes. N. J. Phys. 9, 398 (2007)

    Article  Google Scholar 

  32. Tshiprut, Z., Filippov, A., Urbakh, M.: Effect of tip flexibility on stick-slip motion in friction force microscopy experiments. J. Phys. Condens. Matter. 20, 354002 (2008)

    Article  Google Scholar 

Download references

Acknowledgment

We acknowledge the EUROCORE program FANAS, the Swiss National Center of Competence in Research on Nanoscale Science, and the Swiss National Science Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Glatzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, R., Glatzel, T., Steiner, P. et al. Multiple Slips in Atomic-Scale Friction: An Indicator for the Lateral Contact Damping. Tribol Lett 39, 63–69 (2010). https://doi.org/10.1007/s11249-009-9567-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9567-7

Keywords

Navigation