Skip to main content
Log in

The Roles of Statics and Dynamics in Determining Transitions Between Atomic Friction Regimes

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We introduce a model AFM tip/substrate system that includes full atomistic detail as well as system compliance to study the transitions between three regimes of atomic friction: smooth sliding, stick-single slip, and stick-multiple slip. We characterize these atomic friction regimes in terms of static and dynamic effects, and investigate how the slip modes affect the mean friction. Molecular statics calculations show that reduced-order model predictions of possible transitions between slip regimes are generally adequate for a fully atomistic system, even for complex reaction coordinates. However, molecular dynamics simulations demonstrate that, while static features of the system govern possible slip regimes, dynamic effects ultimately determine actual transitions between slip regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)

    Article  Google Scholar 

  2. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)

    Article  CAS  Google Scholar 

  3. Krylov, S.Y., Jinesh, K.B., Valk, H., Dienwiebel, M., Frenken, J.W.M.: Thermally induced suppression of friction at the atomic scale. Phys. Rev. Lett. 71, 065101 (2005)

    Google Scholar 

  4. Socoliuc, A., Gnecco, E., Maier, S., Pfeiffer, O., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313, 207 (2006)

    Article  CAS  Google Scholar 

  5. Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)

    Article  CAS  Google Scholar 

  6. Zhong, W., Tománek, D.: First-principles theory of atomic-scale friction. Phys. Rev. Lett. 64, 3054–3057 (1990)

    Article  CAS  Google Scholar 

  7. Medyanik, S.N., Liu, W.K., Sung, I.-H., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97, 136106 (2006)

    Article  Google Scholar 

  8. Perez, D., Dong, Y., Martini, A., Voter, A.F.: Rate theory description of atomic stick-slip friction. Phys. Rev. B 81, 245415 (2010)

    Article  Google Scholar 

  9. Conley, W.G., Krousgrill, C.M., Raman, A.: Stick-slip motions in the friction force microscope: effects of tip compliance. Tribol. Lett. 29, 23–32 (2008)

    Article  Google Scholar 

  10. Tshiprut, Z., Zelner, S., Urbakh, M.: Temperature-induced enhancement of nanoscale friction. Phys. Rev. Lett. 102, 136102 (2009)

    Article  CAS  Google Scholar 

  11. Sang, Y., Dube, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)

    Article  CAS  Google Scholar 

  12. Gnecco, E., Bennewitz, R., Loppacher, C., Bammerli, M., Meyer, E., Guntherodt, H.-J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1174 (2000)

    Article  CAS  Google Scholar 

  13. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003)

    Article  CAS  Google Scholar 

  14. Shirmeisen, A., Jasen, L., Hölscher, H., Fuchs, H.: Temperature dependence of point contact friction on silicon. Appl. Phys. Lett. 88, 123108 (2006)

    Article  Google Scholar 

  15. Zhao, X., Phillpot, S.R., Sawyer, W., Sinnott, S.B., Perry, S.S.: Temperature dependence of point contact friction on silicon. Phys. Rev. Lett. 102, 186102 (2008)

    Article  Google Scholar 

  16. Roth, R., Glatzel, T., Steiner, P., Gnecco, E., Baratoff, A., Meyer, E.: Multiple slips in atomic-scale friction: an indicator for the lateral contact damping. Tribol. Lett. 39, 63–69 (2010)

    Article  CAS  Google Scholar 

  17. Nakamura, J., Wakunami, S., Natori, A.: Double-slip mechanism in atomic-scale friction: Tomlinson model at finite temperatures. Phys. Rev. B 72, 235415 (2005)

    Article  Google Scholar 

  18. Voter, A.F.: Embedded atom method potentials for seven FCC metals: Ni, Pd, Pt, Cu, Ag, Au, and Al. Los Alamos Unclassifed Technical Report LA-UR-93-3901 (1993)

  19. Martini, A., Dong, Y., Perez, D., Voter, A.F.: Low-speed atomistic simulation of stick slip friction using parallel replica dynamics. Tribol. Lett. 36, 63–68 (2009)

    Article  CAS  Google Scholar 

  20. Voter, A.F.: Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57, 13985–13988 (1998)

    Article  Google Scholar 

  21. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503 (1989)

    Article  Google Scholar 

  22. E, W., Ren, W., Vanden-Eijnden, E.: String method for the study of rare events. Phys. Rev. B 66, 052301 (2002)

    Google Scholar 

  23. Krylov, S., Dijksman, J.A., van Loo, W.A., Frenken, J.M.: Stick-slip motion in spite of a slippery contact: do we get what we see in atomic friction?. Phys. Rev. Lett. 97, 166103 (2006)

    Article  Google Scholar 

  24. Krylov, S.Y., Frenken, J.W.M.: Thermal contact delocalization in atomic scale friction: a multitude of friction regimes. New. J. Phys. 9, 398 (2007)

    Article  Google Scholar 

  25. Bennewitz, R., Gyalog, T., Gussisberg, M., Meyer, E., Guntherodt, H.-J.: Atomic-scale stick-slip processes on Cu(111). Phys. Rev. B 60, 301–304 (1999)

    Article  Google Scholar 

  26. Carpick, R., Ogletree, D.F., Salmeron, M.: Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl. Phys. Lett. 70, 1 (1997)

    Article  Google Scholar 

  27. Lantz, M.A., Oshea, S.J., Hoole, A.C.F., Welland, M.E.: Lateral stiffness of the tip and tip-sample contact in frictional force microcopy. Appl. Phys. Lett. 70, 8 (1997)

    Article  Google Scholar 

  28. Johnson, K.L., Woodhouse, J.: Stick-slip motion in the atomic force microscope. Tribol. Lett. 5, 155 (1998)

    Article  CAS  Google Scholar 

  29. Kim, W.K., Falk, M.L.: Atomic-scale simulations on the sliding of incommensurate surfaces: the breakdown of superlubricity. Phys. Rev. B 80, 235428 (2009)

    Article  Google Scholar 

  30. Hirano, M., Shinjo, K.: Atomistic locking and friction. Phys. Rev. B 41, 11837 (1990)

    Article  CAS  Google Scholar 

  31. Sørensen, M.R., Jacobsen, K.W., Stoltze, P.: Simulations of atomic-scale sliding friction. Phys. Rev. B 53, 2101–2113 (1996)

    Article  Google Scholar 

  32. Maier, S., Sang, Y., Filleter, T., Grant, M., Bennewitz, R., Gnecco, E., Meyer, E.: Fluctuations and jump dynamics in atomic friction experiments. Phys. Rev. B 72, 245418 (2005)

    Article  Google Scholar 

  33. Voter, A.F., Doll, J.D.: Dynamical corrections to transition state theory for multistate systems: surface self-diffusion in the rare-event regime. J. Chem. Phys. 82, 80–92 (1985)

    Article  CAS  Google Scholar 

  34. Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 104, 066104 (2010)

    Article  Google Scholar 

  35. Gosvami, N.N., Filleter, T., Egberts, P., Bennewitz, R.: Microscopic Friction Studies on Metal Surfaces. Tribol. Lett 39, 19–24 (2010)

    Article  CAS  Google Scholar 

  36. Enachescu, M., Carpick, R.W., Ogletree, D.F., Salmeron, M.: The role of contaminants in the variation of adhesion, friction, and electrical conduction properties of carbide-coated scanning probe tips and Pt(111) in ultrahigh vacuum. J. Appl. Phys. 95, 7694 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the contributions of Jianguo Wu, Dr. Qunyang Li and Dr. Robert Carpick and to the National Science Foundation for its support via award CMMI- 0758604. Work at Los Alamos National Laboratory (LANL) was supported by the United States Department of Energy (U.S. DOE) Office of Basic Energy Sciences, Materials Sciences and Engineering Division, and by the LANL Laboratory Directed Research and Development Program. LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract No. DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashlie Martini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Y., Perez, D., Voter, A.F. et al. The Roles of Statics and Dynamics in Determining Transitions Between Atomic Friction Regimes. Tribol Lett 42, 99–107 (2011). https://doi.org/10.1007/s11249-011-9750-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9750-5

Keywords

Navigation