Skip to main content
Log in

Anisotropy of sliding friction on the triglycine sulfate (010) surface

  • Regular Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The frictional properties of freshly cleaved (010) surfaces of the ferroelectric TriGlycine Sulfate (TGS) were investigated by combined scanning and friction force microscopy under ambient conditions. A frictional contrast could be observed between domains with different electrical polarity, as well as between terraces inside individual domains which are separated by steps of half of the unit-cell height or an odd multiple of this value. The latter contrast mechanism originates from the arrangement of the molecules at the surface which is chemically homogeneous, but structurally rotated by 180° between different terraces. The resulting asymmetric surface potential gives rise to a frictional anisotropy in different directions that can be detected by the force microscope, as well as to a change of the frictional force between forward and backward scan direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J. Briscoe, D.C.B. Evans: Proc. R. Soc. London A380, 389 (1982)

    Google Scholar 

  2. C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang: Phys. Rev. Lett.59, 1942 (1987)

    Google Scholar 

  3. G.A. Tomlinson: Philos. Mag. Ser.7, 905 (1929)

    Google Scholar 

  4. F.C. Frenkel, T. Kontorova: Zh. Eksp. Teor. Fiz.8, 1340 (1938) (Russian)

    Google Scholar 

  5. M. Hirano, K. Shinjo: Phys. Rev. B41, 11837 (1990)

    Google Scholar 

  6. W. Zhong, D. Tománek: Phys. Rev. Lett.64, 3054 (1990)

    Google Scholar 

  7. D. Tománek, W. Zhong, H. Thomas: Europhys. Lett.15, 887 (1991)

    Google Scholar 

  8. G.M. McClelland, J.N. Glosli: InFundamentals of Friction: Macroscopic and Microscopic Processes, ed. by I.L. Singer, H.M. Pollock, NATO ASI Seri E, Vol. 220 (Kluver, Dordrecht 1992) pp. 405–425

    Google Scholar 

  9. J.B. Sokoloff: J. Appl. Phys.72, 1262 (1992)

    Google Scholar 

  10. B.N.J. Persson: Phys. Rev. Lett.71, 1212 (1993)

    Google Scholar 

  11. J.A. Harrison, C.T. White, R.J. Colton, D.W. Brenner: Phys. Rev. B46, 9700 (1992)

    Google Scholar 

  12. J.A. Harrison, R.J. Colton, C.T. White, D.W. Brenner: Wear168, 127 (1993)

    Google Scholar 

  13. J.A. Harrison, C.T. White, R.J. Colton, D.W. Brenner: J. Phys. Chem.97, 6573 (1993)

    Google Scholar 

  14. Y. Enomoto, D. Tabor: Proc. R. Soc. A373, 405 (1981)

    Google Scholar 

  15. R. Takagi, Y. Tsuya: Wear4, 216 (1961)

    Google Scholar 

  16. Y. Tsuya: Wear14, 309 (1969)

    Google Scholar 

  17. M. Hirano, K. Shinjo, R. Kaneko, Y. Murata: Phys. Rev. Lett.67, 2642 (1991)

    Google Scholar 

  18. R.M. Overney, H. Takano, M. Fujihira, W. Paulus, H. Ringsdorf: Phys. Rev. Lett.72, 3546 (1994)

    Google Scholar 

  19. E.A. Wood, A.N. Holden: Acta Cryst.10, 145 (1957)

    Google Scholar 

  20. D. McKie, C. McKie:Essentials of Crystallography (Blackwell, Oxford 1986) pp. 250–261

    Google Scholar 

  21. Digital Instruments, Santa Barbara, CA, USA

  22. O. Marti, J. Colchero, J. Mlynek: Nanotechnol.1, 141 (1990)

    Google Scholar 

  23. G. Meyer, N.M. Amer: Appl. Phys. Lett.57, 2089 (1990)

    Google Scholar 

  24. G.I. Distler, V.N. Lebedeva, E.V. Krasilnikova: Bull. Acad. Sci. USSR, Phys. Ser.44, 86 (1980) (in Russian)

    Google Scholar 

  25. U.D. Schwarz, H. Haefke, P. Reimann, H.-J. Güntherodt: J. Microsc.173, 183 (1994)

    Google Scholar 

  26. M. Labardi, M. Allegrini, M. Salerno, C. Frediani, C. Ascoli: Appl. Phys. A59, 3 (1994)

    Google Scholar 

  27. R. Overney, E. Meyer: Bull. Mater. Res. 26 (1993)

  28. A. Sawada, R. Abe: Jpn. J. Appl. Phys.6, 699 (1967) and references therein

    Google Scholar 

  29. N. Nakatani: Jpn. J. Appl. Phys.25, 27 (1986)

    Google Scholar 

  30. H. Haefke, R. Lüthi, K.-P. Meyer, H.-J. Güntherodt. Ferroelectrics,151, 143 (1994)

    Google Scholar 

  31. R. Lüthi, H. Haefke,, P. Grätter, H.-J. Güntherodt, L. Szczesniak, K.-P. Meyer: Surf. Sci. Lett.285, L498 (1993)

    Google Scholar 

  32. R. Lüthi, H. Haefke, K.-P. Meyer, E. Meyer, L. Howald, H.-J. Güntherodt: J. Appl. Phys.74, 7461 (1993)

    Google Scholar 

  33. K.-P. Meyer: Phys. Stat. Sol (a)94 K1 (1986)

    Google Scholar 

  34. A.G. Chynoweth, J.L. Abel: J. Appl. Phys.30, 1073 (1959)

    Google Scholar 

  35. R.M. Overney, E. Meyer, J. Frommer, D. Broadbeck, R. Lüthi, L. Howald, H.-J. Gütherodt, M. Fujihira, H. Takano, Y. Gotoh: Nature359, 133 (1992)

    Google Scholar 

  36. W. Allers, U.D. Schwarz, G. Gensterblum, R. Wiesendanger: Appl. Phys. A59, 11 (1994)

    Google Scholar 

  37. M. Labardi, M. Allegrini, F. Leccabue, B.E. Watts, C. Ascoli, C. Frediani: Solid State Commun.91, 59 (1994)

    Google Scholar 

  38. S. Hoshino, Y. Okaya, R. Pepinsky: Phys. Rev.115, 323 (1959)

    Google Scholar 

  39. B. Brezina, M. Havránková: Cryst. Res. Technol.20, 781 (1985)

    Google Scholar 

  40. N. Nakatani: Jpn. J. Appl. Phys.18, 491 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bluhm, H., Schwarz, U.D., Meyer, K.P. et al. Anisotropy of sliding friction on the triglycine sulfate (010) surface. Appl. Phys. A 61, 525–533 (1995). https://doi.org/10.1007/BF01540254

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01540254

PACS

Navigation