Skip to main content
Log in

Pluripotent stem cells and livestock genetic engineering

  • TARC X
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The unlimited proliferative ability and capacity to contribute to germline chimeras make pluripotent embryonic stem cells (ESCs) perfect candidates for complex genetic engineering. The utility of ESCs is best exemplified by the numerous genetic models that have been developed in mice, for which such cells are readily available. However, the traditional systems for mouse genetic engineering may not be practical for livestock species, as it requires several generations of mating and selection in order to establish homozygous founders. Nevertheless, the self-renewal and pluripotent characteristics of ESCs could provide advantages for livestock genetic engineering such as ease of genetic manipulation and improved efficiency of cloning by nuclear transplantation. These advantages have resulted in many attempts to isolate livestock ESCs, yet it has been generally concluded that the culture conditions tested so far are not supportive of livestock ESCs self-renewal and proliferation. In contrast, there are numerous reports of derivation of livestock induced pluripotent stem cells (iPSCs), with demonstrated capacity for long term proliferation and in vivo pluripotency, as indicated by teratoma formation assay. However, to what extent these iPSCs represent fully reprogrammed PSCs remains controversial, as most livestock iPSCs depend on continuous expression of reprogramming factors. Moreover, germline chimerism has not been robustly demonstrated, with only one successful report with very low efficiency. Therefore, even 34 years after derivation of mouse ESCs and their extensive use in the generation of genetic models, the livestock genetic engineering field can stand to gain enormously from continued investigations into the derivation and application of ESCs and iPSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anokye-Danso F et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8:376–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ao Y, Mich-Basso JD, Lin B, Yang L (2014) High efficient differentiation of functional hepatocytes from porcine induced pluripotent stem cells. PloS one 9:e100417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bao S et al (2009) Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature 461:1292–1295

    Article  CAS  PubMed  Google Scholar 

  • Bao L et al (2011) Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res 21:600–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beddington RS, Robertson EJ (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development (Cambridge, England) 105:733–737

    CAS  Google Scholar 

  • Blomberg LA, Telugu BP (2012) Twenty years of embryonic stem cell research in farm animals. Reprod Domest Anim 47(Suppl 4):80–85

    Article  PubMed  Google Scholar 

  • Breton A et al (2013) Derivation and characterization of induced pluripotent stem cells from equine fibroblasts. Stem Cells Dev 22:611–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buehr M et al (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298

    Article  CAS  PubMed  Google Scholar 

  • Cao H et al (2012) Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins. Int J Biol Sci 8:498–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson DF et al (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109:17382–17387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers I, Smith A (2004) Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23:7150–7160

    Article  CAS  PubMed  Google Scholar 

  • Chen Y et al (2015) Generation of cynomolgus monkey chimeric fetuses using embryonic stem cells. Cell Stem Cell 17:116–124

    Article  CAS  PubMed  Google Scholar 

  • Cheng D et al (2012) Porcine induced pluripotent stem cells require LIF and maintain their developmental potential in early stage of embryos. PLoS One 7:e51778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherry SR, Biniszkiewicz D, van Parijs L, Baltimore D, Jaenisch R (2000) Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol Cell Biol 20:7419–7426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Z et al (2015) PRMT5 enhances generation of induced pluripotent stem cells from dairy goat embryonic fibroblasts via down-regulation of p53. Cell Prolif 48:29–38

    Article  CAS  PubMed  Google Scholar 

  • Cibelli JB et al (1998) Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat Biotechnol 16:642–646

    Article  CAS  PubMed  Google Scholar 

  • Cook JT, McNiven MA, Richardson GF, Sutterlin AM (2000) Growth rate, body composition and feed digestibility/conversion of growth-enhanced transgenic Atlantic salmon (Salmo salar). Aquaculture 188:15–32

    Article  Google Scholar 

  • Di KQ et al (2015) Generation of fully pluripotent female murine-induced pluripotent stem cells. Biol Reprod 92:123

    Article  PubMed  CAS  Google Scholar 

  • Eakin GS, Hadjantonakis AK (2006) Production of chimeras by aggregation of embryonic stem cells with diploid or tetraploid mouse embryos. Nat Protoc 1:1145–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggan K et al (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 98:6209–6214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteban MA et al (2009) Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284:17634–17640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  • Ezashi T et al (2009) Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci USA 106:10993–10998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan A et al (2013a) Effects of TET1 knockdown on gene expression and DNA methylation in porcine induced pluripotent stem cells. Reproduction (Cambridge, England) 146:569–579

    Article  CAS  Google Scholar 

  • Fan N et al (2013b) Piglets cloned from induced pluripotent stem cells. Cell Res 23:162–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flisikowska T, Kind A, Schnieke A (2014) Genetically modified pigs to model human diseases. J Appl Genet 55:53–64

    Article  PubMed  Google Scholar 

  • Forabosco F, Löhmus M, Rydhmer L, Sundström LF (2013) Genetically modified farm animals and fish in agriculture: a review. Livest Sci 153:1–9

    Article  Google Scholar 

  • Fujishiro SH et al (2013) Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells Dev 22:473–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gafni O et al (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature 504:282–286

    Article  CAS  PubMed  Google Scholar 

  • Gandolfi F, Pennarossa G, Maffei S, Brevini T (2012) Why is it so difficult to derive pluripotent stem cells in domestic ungulates? Reprod Domest Anim 47(Suppl 5):11–17

    Article  PubMed  Google Scholar 

  • Garcia EL, Mills AA (2002) Getting around lethality with inducible Cre-mediated excision. Semin Cell Dev Biol 13:151–158

    Article  CAS  PubMed  Google Scholar 

  • German SD et al (2015) Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cell Reprogram 17:19–27

    Article  CAS  PubMed  Google Scholar 

  • Goncalves NN, Ambrosio CE, Piedrahita JA (2014) Stem cells and regenerative medicine in domestic and companion animals: a multispecies perspective. Reprod Domest Anim 49(Suppl 4):2–10

    Article  PubMed  Google Scholar 

  • Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu M et al (2012) Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circ Res 111:882–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall VJ et al (2012) Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells. Cell Reprogram 14:204–216

    CAS  PubMed  Google Scholar 

  • Hammer RE et al (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683

    Article  CAS  PubMed  Google Scholar 

  • Han X et al (2011) Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Res 21:1509–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harui A, Suzuki S, Kochanek S, Mitani K (1999) Frequency and stability of chromosomal integration of adenovirus vectors. J Virol 73:6141–6146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi K, de Sousa Lopes SM, Surani MA (2007) Germ cell specification in mice. Science (New York, NY) 316:394–396

    Article  CAS  Google Scholar 

  • Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:519–532

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K et al (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science (New York, NY) 338:971–975

    Article  CAS  Google Scholar 

  • Hotta A, Ellis J (2008) Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. J Cell Biochem 105:940–948

    Article  CAS  PubMed  Google Scholar 

  • Hou P et al (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science (New York, NY) 341:651–654

    Article  CAS  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang B et al (2011) A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS One 6:e24501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki S, Campbell KH, Galli C, Akiyama K (2000) Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biol Reprod 62:470–475

    Article  CAS  PubMed  Google Scholar 

  • Jahner D et al (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298:623–628

    Article  CAS  PubMed  Google Scholar 

  • Jia F et al (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaji K et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodadadi K et al (2012) Induction of pluripotency in adult equine fibroblasts without c-MYC. Stem Cells Int 2012:429160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kobayashi T et al (2010) Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142:787–799

    Article  CAS  PubMed  Google Scholar 

  • Koh S, Piedrahita JA (2014) From “ES-like” cells to induced pluripotent stem cells: a historical perspective in domestic animals. Theriogenology 81:103–111

    Article  PubMed  Google Scholar 

  • Kou Z et al (2010) Mice cloned from induced pluripotent stem cells (iPSCs). Biol Reprod 83:238–243

    Article  CAS  PubMed  Google Scholar 

  • Kues WA et al (2013) Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells. Stem Cells Dev 22:124–135

    Article  CAS  PubMed  Google Scholar 

  • Kuijk EW, Chuva de Sousa Lopes SM, Geijsen N, Macklon N, Roelen BA (2011) The different shades of mammalian pluripotent stem cells. Hum Reprod Update 17:254–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Talluri TR, Anand T, Kues WA (2015) Induced pluripotent stem cells: mechanisms, achievements and perspectives in farm animals. World J Stem Cells 7:315–328

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon DJ et al (2013) Generation of leukemia inhibitory factor-dependent induced pluripotent stem cells from the Massachusetts General Hospital miniature pig. BioMed Res Int 2013:140639

    PubMed  PubMed Central  Google Scholar 

  • Lai L et al (2006) Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24:435–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P et al (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W et al (2009) Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4:16–19

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Cang M, Lee AS, Zhang K, Liu D (2011) Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors. PLoS One 6:e15947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillico SG et al (2013) Live pigs produced from genome edited zygotes. Sci Rep 3:2847

    Article  PubMed  Google Scholar 

  • Lim ML et al (2011) A novel, efficient method to derive bovine and mouse embryonic stem cells with in vivo differentiation potential by treatment with 5-azacytidine. Theriogenology 76:133–142

    Article  CAS  PubMed  Google Scholar 

  • Liu J et al (2012a) Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology 77(338–346):e331

    Google Scholar 

  • Liu K et al (2012b) Generation of porcine-induced pluripotent stem cells by using OCT4 and KLF4 porcine factors. Cell Reprogram 14:505–513

    CAS  PubMed  Google Scholar 

  • Ma K et al (2014) miRNAs promote generation of porcine-induced pluripotent stem cells. Mol Cell Biochem 389:209–218

    Article  CAS  PubMed  Google Scholar 

  • Maga EA (2001) The use of recombinase proteins to generate transgenic large animals. Cloning Stem Cells 3:233–241

    Article  CAS  PubMed  Google Scholar 

  • Maga EA, Cullor JS, Smith W, Anderson GB, Murray JD (2006) Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk. Foodborne Pathog Dis 3:384–392

    Article  CAS  PubMed  Google Scholar 

  • Maherali N et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70

    Article  CAS  PubMed  Google Scholar 

  • Malaver-Ortega LF, Sumer H, Liu J, Verma PJ (2012) The state of the art for pluripotent stem cells derivation in domestic ungulates. Theriogenology 78:1749–1762

    Article  PubMed  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez R et al (1999) Mendelian transmission, transgene dosage and growth phenotype in transgenic tilapia (Oreochromis hornorum) showing ectopic expression of homologous growth hormone. Aquaculture 173:271–283

    Article  Google Scholar 

  • Montserrat N et al (2012) Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transpl 21:815–825

    Article  Google Scholar 

  • Muenthaisong S et al (2012) Generation of mouse induced pluripotent stem cells from different genetic backgrounds using Sleeping beauty transposon mediated gene transfer. Exp Cell Res 318:2482–2489

    Article  CAS  PubMed  Google Scholar 

  • Nagy A et al (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development (Cambridge, England) 110:815–821

    CAS  Google Scholar 

  • Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90:8424–8428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy K et al (2011) Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev 7:693–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492

    Article  CAS  PubMed  Google Scholar 

  • Nichols J et al (2009) Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nat Med 15:814–818

    Article  CAS  PubMed  Google Scholar 

  • Niemann H, Kues WA (2007) Transgenic farm animals: an update. Reprod Fertil Dev 19:762–770

    Article  PubMed  Google Scholar 

  • Nienhuis AW, Dunbar CE, Sorrentino BP (2006) Genotoxicity of retroviral integration in hematopoietic cells. Molecular therapy. J Am Soc Gene Ther 13:1031–1049

    Article  CAS  Google Scholar 

  • Nishimura K et al (2011) Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 286:4760–4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak-Imialek M, Niemann H (2012) Pluripotent cells in farm animals: state of the art and future perspectives. Reprod Fertil Dev 25:103–128

    Article  PubMed  Google Scholar 

  • Oback B (2008) Climbing mount efficiency—small steps, not giant leaps towards higher cloning success in farm animals. Reprod Domest Anim 43(Suppl 2):407–416

    Article  PubMed  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  CAS  PubMed  Google Scholar 

  • Okita K et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412

    Article  CAS  PubMed  Google Scholar 

  • Park KE, Telugu BP (2013) Role of stem cells in large animal genetic engineering in the TALENs-CRISPR era. Reprod Fertil Dev 26:65–73

    Article  PubMed  CAS  Google Scholar 

  • Park KM, Cha SH, Ahn C, Woo HM (2013) Generation of porcine induced pluripotent stem cells and evaluation of their major histocompatibility complex protein expression in vitro. Vet Res Commun 37:293–301

    Article  PubMed  Google Scholar 

  • Payer B, Lee JT, Namekawa SH (2011) X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Hum Genet 130:265–280

    Article  PubMed  PubMed Central  Google Scholar 

  • Pera MF, Tam PP (2010) Extrinsic regulation of pluripotent stem cells. Nature 465:713–720

    Article  CAS  PubMed  Google Scholar 

  • Petkov S, Hyttel P, Niemann H (2013) The choice of expression vector promoter is an important factor in the reprogramming of porcine fibroblasts into induced pluripotent cells. Cell Reprogram 15:1–8

    CAS  PubMed  Google Scholar 

  • Polejaeva IA, Campbell KH (2000) New advances in somatic cell nuclear transfer: application in transgenesis. Theriogenology 53:117–126

    Article  CAS  PubMed  Google Scholar 

  • Polejaeva I, Mitalipov S (2013) Stem cell potency and the ability to contribute to chimeric organisms. Reproduction (Cambridge, England) 145:R81–R88

    Article  CAS  Google Scholar 

  • Proudfoot C et al (2015) Genome edited sheep and cattle. Transgenic Res 24:147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pursel VG et al (1997) Transfer of an ovine metallothionein-ovine growth hormone fusion gene into swine. J Anim Sci 75:2208–2214

    CAS  PubMed  Google Scholar 

  • Rahman MA, Mak R, Ayad H, Smith A, Maclean N (1998) Expression of a novel piscine growth hormone gene results in growth enhancement in transgenic tilapia (Oreochromis niloticus). Transgenic Res 7:357–369

    Article  CAS  PubMed  Google Scholar 

  • Remy S et al (2014) Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases. Genome Res 24:1371–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J et al (2011) Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming. Cell Res 21:849–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richt JA et al (2007) Production of cattle lacking prion protein. Nat Biotechnol 25:132–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rideout WM 3rd et al (2000) Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nat Genet 24:109–110

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Allegrucci C, Alberio R (2012) Modulation of pluripotency in the porcine embryo and iPS cells. PLoS One 7:e49079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers CS et al (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science (New York, NY) 321:1837–1841

    Article  CAS  Google Scholar 

  • Saeki K et al (2004) Functional expression of a Delta12 fatty acid desaturase gene from spinach in transgenic pigs. Proc Natl Acad Sci USA 101:6361–6366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito S et al (2003) Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochem Biophys Res Commun 309:104–113

    Article  CAS  PubMed  Google Scholar 

  • Sandmaier SE et al (2015) Generation of induced pluripotent stem cells from domestic goats. Mol Reprod Dev 82:709–721

    Article  CAS  PubMed  Google Scholar 

  • Sartori C et al (2012) Ovine-induced pluripotent stem cells can contribute to chimeric lambs. Cell Reprogram 14:8–19

    CAS  PubMed  Google Scholar 

  • Seki T, Fukuda K (2015) Methods of induced pluripotent stem cells for clinical application. World J Stem Cells 7:116–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Soldner F et al (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song H et al (2013) Induced pluripotent stem cells from goat fibroblasts. Mol Reprod Dev 80:1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Sridharan R et al (2009) Role of the murine reprogramming factors in the induction of pluripotency. Cell 136:364–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadtfeld M, Maherali N, Breault DT, Hochedlinger K (2008a) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2:230–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008b) Induced pluripotent stem cells generated without viral integration. Science (New York, NY) 322:945–949

    Article  CAS  Google Scholar 

  • Sumer H et al (2011) NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci 89:2708–2716

    Article  CAS  PubMed  Google Scholar 

  • Taft RA et al (2013) The perfect host: a mouse host embryo facilitating more efficient germ line transmission of genetically modified embryonic stem cells. PLoS One 8:e67826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Takashima Y et al (2014) Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158:1254–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talluri TR et al (2014) Non-viral reprogramming of fibroblasts into induced pluripotent stem cells by Sleeping Beauty and piggyBac transposons. Biochem Biophys Res Commun 450:581–587

    Article  CAS  PubMed  Google Scholar 

  • Talluri TR et al (2015) Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cell Reprogram 17:131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam PP, Rossant J (2003) Mouse embryonic chimeras: tools for studying mammalian development. Development (Cambridge, England) 130:6155–6163

    Article  CAS  Google Scholar 

  • Tarkowski AK, Witkowska A, Opas J (1977) Development of cytochalasin in B-induced tetraploid and diploid/tetraploid mosaic mouse embryos. J Embryol Exp Morphol 41:47–64

    CAS  PubMed  Google Scholar 

  • Telugu BP, Ezashi T, Roberts RM (2010a) Porcine induced pluripotent stem cells analogous to naive and primed embryonic stem cells of the mouse. Int J Dev Biol 54:1703–1711

    Article  CAS  PubMed  Google Scholar 

  • Telugu BP, Ezashi T, Roberts RM (2010b) The promise of stem cell research in pigs and other ungulate species. Stem Cell Rev 6:31–41

    Article  PubMed  Google Scholar 

  • Tesar PJ et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199

    Article  CAS  PubMed  Google Scholar 

  • Theunissen TW et al (2014) Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15:471–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson JA et al (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 92:7844–7848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science (New York, NY) 282:1145–1147

    Article  CAS  Google Scholar 

  • Tokusumi T et al (2002) Recombinant Sendai viruses expressing different levels of a foreign reporter gene. Virus Res 86:33–38

    Article  CAS  PubMed  Google Scholar 

  • Tonge PD et al (2014) Divergent reprogramming routes lead to alternative stem-cell states. Nature 516:192–197

    Article  CAS  PubMed  Google Scholar 

  • van Berkel PH et al (2002) Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotechnol 20:484–487

    Article  PubMed  CAS  Google Scholar 

  • Vize PD et al (1988) Introduction of a porcine growth hormone fusion gene into transgenic pigs promotes growth. J Cell Sci 90(Pt 2):295–300

    CAS  PubMed  Google Scholar 

  • Wakayama T, Rodriguez I, Perry AC, Yanagimachi R, Mombaerts P (1999) Mice cloned from embryonic stem cells. Proc Natl Acad Sci USA 96:14984–14989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall RJ et al (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23:445–451

    Article  CAS  PubMed  Google Scholar 

  • Wang J et al (2013) Tbx3 and Nr5alpha2 play important roles in pig pluripotent stem cells. Stem Cell Rev 9:700–708

    Article  CAS  PubMed  Google Scholar 

  • Warren L et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei C et al (2015) Characterization of porcine partially reprogrammed iPSCs from adipose-derived stem cells. Reproduction (Cambridge, England) 149:485–496

    Article  CAS  Google Scholar 

  • Wernig M et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    Article  CAS  PubMed  Google Scholar 

  • West FD et al (2010) Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev 19:1211–1220

    Article  CAS  PubMed  Google Scholar 

  • West FD et al (2011) Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells (Dayton, Ohio) 29:1640–1643

    Article  CAS  Google Scholar 

  • Whitworth DJ, Ovchinnikov DA, Sun J, Fortuna PR, Wolvetang EJ (2014a) Generation and characterization of leukemia inhibitory factor-dependent equine induced pluripotent stem cells from adult dermal fibroblasts. Stem Cells Dev 23:1515–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitworth KM et al (2014b) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woltjen K et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Belmonte JCI (2014) Stem cells: a designer’s guide to pluripotency. Nature 516:172–173

    Article  CAS  PubMed  Google Scholar 

  • Wu Z et al (2009) Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1:46–54

    Article  CAS  PubMed  Google Scholar 

  • Wu Y et al (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659–662

    Article  CAS  PubMed  Google Scholar 

  • Wu J et al (2015) An alternative pluripotent state confers interspecies chimaeric competency. Nature 521:316–321

    Article  CAS  PubMed  Google Scholar 

  • Wutz A, Jaenisch R (2000) A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 5:695–705

    Article  CAS  PubMed  Google Scholar 

  • Xie B et al (2014) Positive correlation between the efficiency of induced pluripotent stem cells and the development rate of nuclear transfer embryos when the same porcine embryonic fibroblast lines are used as donor cells. Cell Reprogram 16:206–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H et al (2013a) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JY, Mumaw JL, Liu Y, Stice SL, West FD (2013b) SSEA4-positive pig induced pluripotent stem cells are primed for differentiation into neural cells. Cell Transpl 22:945–959

    Article  Google Scholar 

  • Yeom YI et al (1996) Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development (Cambridge, England) 122:881–894

    CAS  Google Scholar 

  • Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    Article  CAS  PubMed  Google Scholar 

  • Yu G et al (2009a) Generation of goats lacking prion protein. Mol Reprod Dev 76:3

    Article  CAS  PubMed  Google Scholar 

  • Yu J et al (2009b) Human induced pluripotent stem cells free of vector and transgene sequences. Science (New York, NY) 324:797–801

    Article  CAS  Google Scholar 

  • Yusa K, Rad R, Takeda J, Bradley A (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6:363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y et al (2014) Efficient reprogramming of Naïve-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system. PLoS One 9:e85089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W et al (2015) Pluripotent and metabolic features of two types of porcine iPSCs derived from defined mouse and human ES cell culture conditions. PLoS One 10:e0124562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou H et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384

    Article  CAS  PubMed  Google Scholar 

  • Zhou S et al (2010) Successful generation of cloned mice using nuclear transfer from induced pluripotent stem cells. Cell Res 20:850–853

    Article  PubMed  Google Scholar 

  • Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875

    Article  CAS  PubMed  Google Scholar 

  • Zufferey R et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We want to thank Mauricio Romero for help with figure design. Delia Soto is supported by a doctoral scholarship from CONICYT Becas Chile. Work in the Ross laboratory related to this manuscript is supported by NIH/NICHD RO1 HD070044 and USDA/NIFA Hatch Projects W-3171 and W-2112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo J. Ross.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto, D.A., Ross, P.J. Pluripotent stem cells and livestock genetic engineering. Transgenic Res 25, 289–306 (2016). https://doi.org/10.1007/s11248-016-9929-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-016-9929-5

Keywords

Navigation