Skip to main content

CRISPR/Cas9 for Sickle Cell Disease: Applications, Future Possibilities, and Challenges

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 5

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1144))

Abstract

Sickle cell disease (SCD) is an inherited monogenic disorder resulting in serious mortality and morbidity worldwide. Although the disease was characterized more than a century ago, there are only two FDA approved medications to lessen disease severity, and a definitive cure available to all patients with SCD is lacking. Rapid and substantial progress in genome editing approaches have proven valuable as a curative option given plausibility to either correct the underlying mutation in patient-derived hematopoietic stem/progenitor cells (HSPCs), induce fetal hemoglobin expression to circumvent sickling of red blood cells (RBCs), or create corrected induced pluripotent stem cells (iPSCs) among other approaches. Recent discovery of CRISPR/Cas9 has not only revolutionized genome engineering but has also brought the possibility of translating these concepts into a clinically meaningful reality. Here we summarize genome engineering applications using CRISPR/Cas9, addressing challenges and future perspectives of CRISPR/Cas9 as a curative option for SCD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAV:

Adeno-associated virus

BM:

Bone marrow

Cas9:

CRISPR associated protein 9

CRISPR:

Clustered regularly interspaced short palindromic repeats

DSB:

Double strand breaks

dCas9:

Dead Cas9

ddPCR:

Droplet digital PCR

eSpCas9:

Enhanced specificity Streptococcus pyogenes Cas9

GVHD:

Graft-vs-host disease

HbA:

Adult hemoglobin

HbF:

Fetal hemoglobin

HbS:

Hemoglobin S

HDR:

Homology directed repair

HLA:

Human leukocyte antigen

HPFH:

Hereditary persistence of fetal globin

HPLC:

High performance liquid chromatography

HRI:

Heme-regulated inhibitor

HSCT:

Hematopoietic stem cell transplantation

HSPCs:

Hematopoietic stem/progenitor cells

HU:

Hydroxyurea

INDELs:

Insertions/deletions

iPSCs:

Induced pluripotent stem cells

LCR:

Locus control region

MUD:

Matched unrelated donor

NHEJ:

Non-homologous end-joining

OTEs:

Off-target effects

PACE:

Phage-assisted continuous evolution

PAM:

Protospacer-adjacent motif

QTL:

Quantitative trait loci

RBCs:

red blood cells

ScCas9:

Streptococcus canis Cas9

SCD:

Sickle cell disease

shRNAmiR :

MicroRNA-adapted small hairpin (sh) RNAs

SpCas9-HF1:

high fidelity Streptococcus pyogenes Cas9

TALENs:

TAL-effector nucleases

UCBT:

Umbilical cord blood transplantation

ZFNs:

Zinc finger nucleases

References

  • Adikusuma F, Piltz S, Corbett MA, Turvey M, McColl SR, Helbig KJ, Beard MR, Hughes J, Pomerantz RT, Thomas PQ (2018) Large deletions induced by Cas9 cleavage. Nature 560(7717):E8–E9

    Article  CAS  PubMed  Google Scholar 

  • Anders C, Bargsten K, Jinek M (2016) Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol Cell 61(6):895–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antoniani C, Meneghini V, Lattanzi A, Felix T, Romano O, Magrin E, Weber L, Pavani G, El Hoss S, Kurita R (2018) Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. Blood 131(17):1960–1973. https://doi.org/10.1182/blood-2017-10-811505

    Article  CAS  PubMed  Google Scholar 

  • Arnold SD, Brazauskas R, He N, Li Y, Aplenc R, Jin Z, Hall M, Atsuta Y, Dalal J, Hahn T (2017) Clinical risks and healthcare utilization of haematopoietic cell transplantation for sickle cell disease in the US using merged databases. Haematologica 102(11):1823–1832. https://doi.org/10.3324/haematol.2017.169581

    Article  PubMed  PubMed Central  Google Scholar 

  • Bak RO, Gomez-Ospina N, Porteus MH (2018) Gene editing on center stage. Trends Genet 34(8):600–611

    Article  CAS  PubMed  Google Scholar 

  • Ballas SK (2009) The cost of health care for patients with sickle cell disease. Am J Hematol 84(6):320–322

    Article  PubMed  Google Scholar 

  • Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, Lin C, Shao Z, Canver MC, Smith EC, Pinello L (2013) An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342(6155):253–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia M, Kolva E, Cimini L, Jin Z, Satwani P, Savone M, George D, Garvin J, Paz ML, Briamonte C (2015) Health-related quality of life after allogeneic hematopoietic stem cell transplantation for sickle cell disease. Biol Blood Marrow Transplant 21(4):666–672

    Article  PubMed  PubMed Central  Google Scholar 

  • Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP (2015) BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527(7577):192–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti S, Bareford D (2007) A survey on patient perception of reduced-intensity transplantation in adults with sickle cell disease. Bone Marrow Transplant 39(8):447–451

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth CT, Deshpande PS, Dever DP, Dejene B, Gomez-Ospina N, Mantri S, Pavel-Dinu M, Camarena J, Weinberg KI, Porteus MH (2018) Identification of pre-existing adaptive immunity to Cas9 proteins in humans. BioRxiv:243345. https://doi.org/10.1101/243345

  • Chatterjee P, Jakimo N, Jacobson JM (2018) Minimal PAM specificity of a highly similarSpCas9 ortholog. Sci Adv 4:eaau0766

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550(7676):407–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung JE, Magis W, Vu J, Heo S-J, Wartiovaara K, Walters MC, Kurita R, Nakamura Y, Boffelli D, Martin DI (2018) CRISPR-Cas9 interrogation of a putative fetal globin repressor in human erythroid cells. BioRxiv:335729. https://doi.org/10.1101/335729

  • Cromwell CR, Sung K, Park J, Krysler AR, Jovel J, Kim SK, Hubbard BP (2018) Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat Commun 9(1):1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirci S, Uchida N, Tisdale JF (2018) Gene therapy for sickle cell disease: an update. Cytotherapy 20(7):899–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S (2016) CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 539(7629):384–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeWitt MA, Magis W, Bray NL, Wang T, Berman JR, Urbinati F, Heo S-J, Mitros T, Muñoz DP, Boffelli D (2016) Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Science Transl Med 8(360):360ra134–360ra134

    Article  CAS  Google Scholar 

  • Esrick EB, Bauer DE (2018) Genetic therapies for sickle cell disease. Semin Hematol 55(8):76–86

    Article  PubMed  Google Scholar 

  • Esrick EB, Brendel C, Manis JP, Armant MA, Negre H, Dansereau C, Ciuculescu MF, Patriarca S, Mackinnon B, Daley H (2018) Flipping the switch: initial results of genetic targeting of the fetal to adult globin switch in sickle cell patients. Blood 132:1023

    Google Scholar 

  • Ferreira AF, Calin GA, Picanço-Castro V, Kashima S, Covas DT, de Castro FA (2018) Hematopoietic stem cells from induced pluripotent stem cells–considering the role of microRNA as a cell differentiation regulator. J Cell Sci 131(4):jcs203018

    Article  CAS  PubMed  Google Scholar 

  • Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lecrivain A-L, Bzdrenga J, Koonin EV, Charpentier E (2013) Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42(4):2577–2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forget BG (1998) Molecular basis of hereditary persistence of fetal hemoglobin. Ann N Y Acad Sci 850(1):38–44

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3):279–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita A, Uchida N, Haro-Mora JJ, Winkler T, Tisdale J (2016) β-globin-expressing definitive erythroid progenitor cells generated from embryonic and induced pluripotent stem cell-derived sacs. Stem Cells 34(6):1541–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass Z, Lee M, Li Y, Xu Q (2018) Engineering the delivery system for CRISPR-based genome editing. Trends Biotechnol 36(2):173–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gluckman E, Cappelli B, Bernaudin F, Labopin M, Volt F, Carreras J, Simões BP, Ferster A, Dupont S, De La Fuente J (2017) Sickle cell disease: an international survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood 129(11):1548–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grevet JD, Lan X, Hamagami N, Edwards CR, Sankaranarayanan L, Ji X, Bhardwaj SK, Face CJ, Posocco DF, Abdulmalik O (2018) Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells. Science 361(6399):285–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33(9):985–989. https://doi.org/10.1038/nbt.3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano S, Nishimasu H, Ishitani R, Nureki O (2016) Structural basis for the altered PAM specificities of engineered CRISPR-Cas9. Mol Cell 61(6):886–894

    Article  CAS  PubMed  Google Scholar 

  • Hoban MD, Lumaquin D, Kuo CY, Romero Z, Long J, Ho M, Young CS, Mojadidi M, Fitz-Gibbon S, Cooper AR (2016a) CRISPR/Cas9-mediated correction of the sickle mutation in human CD34+ cells. Mol Ther 24(9):1561–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoban MD, Orkin SH, Bauer DE (2016b) Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. Blood 127(7):839–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh MM, Fitzhugh CD, Weitzel RP, Link ME, Coles WA, Zhao X, Rodgers GP, Powell JD, Tisdale JF (2014) Nonmyeloablative HLA-matched sibling allogeneic hematopoietic stem cell transplantation for severe sickle cell phenotype. JAMA 312(1):48–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556(7699):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Wang Y, Yan W, Smith C, Ye Z, Wang J, Gao Y, Mendelsohn L, Cheng L (2015) Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells 33(5):1470–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humbert O, Peterson CW, Norgaard ZK, Radtke S, Kiem H-P (2018) A nonhuman primate transplantation model to evaluate hematopoietic stem cell gene editing strategies for β-hemoglobinopathies. Mol Ther Methods Clin Dev 8:75–86

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Mei M, Li B, Zhu X, Zu W, Tian Y, Wang Q, Guo Y, Dong Y, Tan X (2017) A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res 27(3):440–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR (2017) Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 35(4):371–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Koo T, Jee H-G, Cho H-Y, Lee G, Lim D-G, Shin HS, Kim J-S (2018) CRISPR RNAs trigger innate immune responses in human cells. Genome Res 28:367–373. https://doi.org/10.1101/gr.231936.117

    Article  CAS  PubMed Central  Google Scholar 

  • Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh J-RJ (2015a) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, Joung JK (2015b) Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33(12):1293–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36(8):765–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lan X, Khandros E, Grevet JD, Peslak SA, Bhardwaj S, Keller CA, Giardine B, Garcia BA, Hardison RC, Shi J (2018) Domain-focused CRISPR-Cas9 screen identifies the E3 ubiquitin ligase substrate adaptor protein SPOP as a novel repressor of fetal hemoglobin. Blood 132:414

    Google Scholar 

  • Lanzkron S, Carroll CP, Haywood C Jr (2013) Mortality rates and age at death from sickle cell disease: US, 1979–2005. Public Health Rep 128(2):110–116

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JK, Jeong E, Lee J, Jung M, Shin E, Kim Y-h, Lee K, Jung I, Kim D, Kim S (2018) Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun 9(1):3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leenay RT, Beisel CL (2017) Deciphering, communicating, and engineering the CRISPR PAM. J Mol Biol 429(2):177–191

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Peterson KR, Fang X, Stamatoyannopoulos G (2002) Locus control regions. Blood 100(9):3077–3086

    Article  CAS  PubMed  Google Scholar 

  • Li C, Ding L, Sun C-W, Wu L-C, Zhou D, Pawlik KM, Khodadadi-Jamayran A, Westin E, Goldman FD, Townes TM (2016) Novel HDAd/EBV reprogramming vector and highly efficient Ad/CRISPR-Cas sickle cell disease gene correction. Sci Rep 6:30422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Psatha N, Sova P, Gil S, Wang H, Kim J, Kulkarni C, Valensisi C, Hawkins RD, Stamatoyannopoulos G (2018) Reactivation of γ-globin in adult β-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing. Blood 131:2915–2928. https://doi.org/10.1182/blood-2018-03-838540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Keller JR, Ortiz M, Tessarollo L, Rachel RA, Nakamura T, Jenkins NA, Copeland NG (2003) Bcl11a is essential for normal lymphoid development. Nat Immunol 4(6):525–532

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Hargreaves VV, Zhu Q, Kurland JV, Hong J, Kim W, Sher F, Macias-Trevino C, Rogers JM, Kurita R (2018) Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell 173(2):430–442. e417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobner K, Lanzkron S, Haywood C (2013) NIH and National Foundation Expenditures for sickle cell disease and cystic fibrosis are associated with Pubmed publications and FDA approvals. Blood 122:1739

    Google Scholar 

  • Lomova A, Clark DN, Campo-Fernandez B, Flores-Bjurström C, Kaufman ML, Fitz-Gibbon S, Wang X, Miyahira EY, Brown D, DeWitt MA (2018) Improving gene editing outcomes in human hematopoietic stem and progenitor cells by temporal control of DNA repair. Stem Cells:1–11. https://doi.org/10.1002/stem.2935

  • M Scharenberg A, Duchateau P, Smith J (2013) Genome engineering with TAL-effector nucleases and alternative modular nuclease technologies. Curr Gene Ther 13(4):291–303

    Article  CAS  Google Scholar 

  • Magis W, DeWitt MA, Wyman SK, Vu JT, Heo S-J, Shao SJ, Hennig F, Romero ZG, Campo-Fernandez B, McNeill M (2018) In vivo selection for corrected β-globin alleles after CRISPR/Cas9 editing in human sickle hematopoietic stem cells enhances therapeutic potential. BioRxiv:432716. https://doi.org/10.1101/432716

  • Martin R, Ikeda K, Uchida N, Cromer MK, Nishimura T, Dever DP, Camarena J, Bak R, Lausten A, Jakobsen MR (2018) Selection-free, high frequency genome editing by homologous recombination of human pluripotent stem cells using Cas9 RNP and AAV6. BioRxiv:252163. https://doi.org/10.1101/252163

  • Martyn GE, Wienert B, Yang L, Shah M, Norton LJ, Burdach J, Kurita R, Nakamura Y, Pearson RC, Funnell AP (2018) Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat Genet 50(4):498–503

    Article  CAS  PubMed  Google Scholar 

  • Masuda T, Wang X, Maeda M, Canver MC, Sher F, Funnell AP, Fisher C, Suciu M, Martyn GE, Norton LJ (2016) Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 351(6270):285–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menzel S, Garner C, Gut I, Matsuda F, Yamaguchi M, Heath S, Foglio M, Zelenika D, Boland A, Rooks H (2007) A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet 39(10):1197–1199

    Article  CAS  PubMed  Google Scholar 

  • Nihongaki Y, Kawano F, Nakajima T, Sato M (2015) Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol 33(7):755–760

    Article  CAS  PubMed  Google Scholar 

  • Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H (2018) Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361(6408):1259–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paikari A, Sheehan VA (2018) Fetal haemoglobin induction in sickle cell disease. Br J Haematol 180(2):189–200

    Article  CAS  PubMed  Google Scholar 

  • Park S, Gianotti-Sommer A, Molina-Estevez FJ, Vanuytsel K, Skvir N, Leung A, Rozelle SS, Shaikho EM, Weir I, Jiang Z (2017) A comprehensive, ethnically diverse library of sickle cell disease-specific induced Pluripotent stem cells. Stem Cell Rep 8(4):1076–1085

    Article  CAS  Google Scholar 

  • Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31(9):839–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulukonis ST, Eckman JR, Snyder AB, Hagar W, Feuchtbaum LB, Zhou M, Grant AM, Hulihan MM (2016) Defining sickle cell disease mortality using a population-based surveillance system, 2004 through 2008. Public Health Rep 131(2):367–375

    Article  PubMed  PubMed Central  Google Scholar 

  • Piel FB, Hay SI, Gupta S, Weatherall DJ, Williams TN (2013) Global burden of sickle cell anaemia in children under five, 2010–2050: modelling based on demographics, excess mortality, and interventions. PLoS Med 10(7):e1001484

    Article  PubMed  PubMed Central  Google Scholar 

  • Psatha N, Reik A, Phelps S, Zhou Y, Dalas D, Yannaki E, Levasseur DN, Urnov FD, Holmes MC, Papayannopoulou T (2018) Disruption of the BCL11A erythroid enhancer reactivates fetal hemoglobin in erythroid cells of patients with β-thalassemia major. Mol Ther Methods Clin Dev 10:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahdar M, McMahon MA, Prakash TP, Swayze EE, Bennett CF, Cleveland DW (2015) Synthetic CRISPR RNA-Cas9–guided genome editing in human cells. Proc Natl Acad Sci 112(51):E7110–E7117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy B, Zhao J, Yang C, Luo W, Xiong T, Li Y, Fang X, Gao G, Singh CO, Madsen L (2018) CRISPR/cascade 9-mediated genome editing-challenges and opportunities. Front Genet 9:240–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saenz C, Tisdale JF (2015) Assessing costs, benefits, and risks in chronic disease: taking the long view. Biol Blood Marrow Transplant 21(7):1149–1150

    Article  PubMed  Google Scholar 

  • Sankaran VG, Orkin SH (2013) The switch from fetal to adult hemoglobin. Cold Spring Harb Perspect Med 3(1):a011643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim G, Kim D, Park GT, Jin H, Suh S-K, Oh Y-K (2017) Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol Sin 38(6):738–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin HY, Wang C, Lee HK, Yoo KH, Zeng X, Kuhns T, Yang CM, Mohr T, Liu C, Hennighausen L (2017) CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun 8:15464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simhadri VL, McGill J, McMahon S, Wang J, Jiang H, Sauna ZE (2018) Prevalence of pre-existing antibodies to CRISPR-associated nuclease Cas9 in the US population. Mol Ther Methods Clin Dev 10:105–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88

    Article  CAS  PubMed  Google Scholar 

  • Smith LA, Oyeku SO, Homer C, Zuckerman B (2006) Sickle cell disease: a question of equity and quality. Pediatrics 117(5):1763–1770

    Article  PubMed  Google Scholar 

  • Smith EC, Luc S, Croney DM, Woodworth MB, Greig LC, Fujiwara Y, Nguyen M, Sher F, Macklis JD, Bauer DE (2016) Strict in vivo specificity of the Bcl11a erythroid enhancer. Blood 128(19):2338–2342. https://doi.org/10.1182/blood-2016-08-736249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatoyannopoulos G, Wood W, Papayannopoulou T, Nute P (1975) A new form of hereditary persistence of fetal hemoglobin in blacks and its association with sickle cell trait. Blood 46(5):683–692

    CAS  PubMed  Google Scholar 

  • Steinberg MH, Barton F, Castro O, Pegelow CH, Ballas SK, Kutlar A, Orringer E, Bellevue R, Olivieri N, Eckman J (2003) Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA 289(13):1645–1651

    Article  CAS  PubMed  Google Scholar 

  • Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19(1):7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimura R, Jha DK, Han A, Soria-Valles C, da Rocha EL, Lu Y-F, Goettel JA, Serrao E, Rowe RG, Malleshaiah M (2017) Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature 545(7655):432–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tasan I, Jain S, Zhao H (2016) Use of genome-editing tools to treat sickle cell disease. Hum Genet 135(9):1011–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32(6):569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187–197

    Article  CAS  PubMed  Google Scholar 

  • Tsang JC, Yu Y, Burke S, Buettner F, Wang C, Kolodziejczyk AA, Teichmann SA, Lu L, Liu P (2015) Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells. Genome Biol 16(1):178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W, Usala G, Busonero F, Maschio A, Albai G (2008) Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proc Natl Acad Sci 105(5):1620–1625

    Article  PubMed  PubMed Central  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646

    Article  CAS  PubMed  Google Scholar 

  • Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, Bode NM, McNeill MS, Yan S, Camarena J (2018) A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med 24(8):1216–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters MC, Patience M, Leisenring W, Eckman JR, Scott JP, Mentzer WC, Davies SC, Ohene-Frempong K, Bernaudin F, Matthews DC (1996) Bone marrow transplantation for sickle cell disease. N Engl J Med 335(6):369–376

    Article  CAS  PubMed  Google Scholar 

  • Walters M, Patience M, Leisenring W, Rogers Z, Aquino V, Buchanan G, Roberts I, Yeager A, Hsu L, Adamkiewicz T (2001) Stable mixed hematopoietic chimerism after bone marrow transplantation for sickle cell anemia. Biol Blood Marrow Transplant 7(12):665–673

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Thein SL (2018) Switching from fetal to adult hemoglobin. Nat Genet 50(4):478–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WC, Ware RE, Miller ST, Iyer RV, Casella JF, Minniti CP, Rana S, Thornburg CD, Rogers ZR, Kalpatthi RV (2011) Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet 377(9778):1663–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ware RE (2010) How I use hydroxyurea to treat young patients with sickle cell anemia. Blood 115(26):5300–5311. https://doi.org/10.1182/blood-2009-Blood

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson J, Stahman AW, Bilello FP (1948) The significance of the paucity of sickle cells in newborn Negro infants. Obstet Gynecol Surv 3(6):819–820

    Article  Google Scholar 

  • Wen J, Tao W, Hao S, Zu Y (2017) Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing. J Hematol Oncol 10(1):119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15(8):541–555

    Article  CAS  PubMed  Google Scholar 

  • Zetsche B, Volz SE, Zhang F (2015) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33(2):139–142

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman SA, Schultz WH, Burgett S, Mortier NA, Ware RE (2007) Hydroxyurea therapy lowers transcranial Doppler flow velocities in children with sickle cell anemia. Blood 110(3):1043–1047

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

The authors have no commercial, proprietary, or financial interest in the products described in this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Selami Demirci or John F. Tisdale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demirci, S., Leonard, A., Haro-Mora, J.J., Uchida, N., Tisdale, J.F. (2019). CRISPR/Cas9 for Sickle Cell Disease: Applications, Future Possibilities, and Challenges. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 5. Advances in Experimental Medicine and Biology(), vol 1144. Springer, Cham. https://doi.org/10.1007/5584_2018_331

Download citation

Publish with us

Policies and ethics