Skip to main content

Advertisement

Log in

Genetically modified pigs to model human diseases

  • Animal Genetics ∙ Review
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Genetically modified mice are powerful tools to investigate the molecular basis of many human diseases. Mice are, however, of limited value for preclinical studies, because they differ significantly from humans in size, general physiology, anatomy and lifespan. Considerable efforts are, thus, being made to develop alternative animal models for a range of human diseases. These promise powerful new resources that will aid the development of new diagnostics, medicines and medical procedures. Here, we provide a comprehensive review of genetically modified porcine models described in the scientific literature: various cancers, cystic fibrosis, Duchenne muscular dystrophy, autosomal polycystic kidney disease, Huntington’s disease, spinal muscular atrophy, haemophilia A, X-linked severe combined immunodeficiency, retinitis pigmentosa, Stargardt disease, Alzheimer’s disease, various forms of diabetes mellitus and cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam M, Bayer C, Henke J, Grosu A, Molls M, Nieder C (2008) Tirapazamine plus cisplatin and irradiation in a mouse model: improved tumor control at the cost of increased toxicity. J Cancer Res Clin Oncol 134:137–146

    CAS  PubMed  Google Scholar 

  • Aigner B, Rathkolb B, Herbach N, Hrabé de Angelis M, Wanke R, Wolf E (2008) Diabetes models by screen for hyperglycemia in phenotype-driven ENU mouse mutagenesis projects. Am J Physiol Endocrinol Metab 294:E232–E240

    CAS  PubMed  Google Scholar 

  • Al-Mashhadi RH, Sørensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP et al (2013) Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med 5:166ra1. doi:10.1126/scitranslmed.3004853

    PubMed  Google Scholar 

  • Barrow RT, Lollar P (2006) Neutralization of antifactor VIII inhibitors by recombinant porcine factor VIII. J Thromb Haemost 4:2223–2229

    CAS  PubMed  Google Scholar 

  • Baxa M, Hruska-Plochan M, Juhas S, Vodicka P, Pavlok A, Juhasova J et al (2013) A transgenic minipig model of Huntington’s disease. J Huntingtons Dis 2:47–68

    CAS  PubMed  Google Scholar 

  • Bebee TW, Dominguez CE, Chandler DS (2012) Mouse models of SMA: tools for disease characterization and therapeutic development. Hum Genet 131:1277–1293

    CAS  PubMed  Google Scholar 

  • Benson S, Wu J, Padmanabhan S, Kurtz TW, Pershadsingh HA (2000) Peroxisome proliferator-activated receptor (PPAR)-gamma expression in human vascular smooth muscle cells: inhibition of growth, migration, and c-fos expression by the peroxisome proliferator-activated receptor (PPAR)-gamma activator troglitazone. Am J Hypertens 13:74–82

    CAS  PubMed  Google Scholar 

  • Bentzon JF, Falk E (2010) Atherosclerotic lesions in mouse and man: is it the same disease? Curr Opin Lipidol 21:434–440

    CAS  PubMed  Google Scholar 

  • Bi L, Lawler AM, Antonarakis SE, High KA, Gearhart JD, Kazazian HH Jr (1995) Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet 10:119–121

    CAS  PubMed  Google Scholar 

  • Boivin GP, Washington K, Yang K, Ward JM, Pretlow TP, Russell R et al (2003) Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 124:762–777

    PubMed  Google Scholar 

  • Bragonzi A (2010) Murine models of acute and chronic lung infection with cystic fibrosis pathogens. Int J Med Microbiol 300:584–593

    PubMed  Google Scholar 

  • Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M et al (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109:17382–17387

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cohn JS, Patterson BW, Uffelman KD, Davignon J, Steiner G (2004) Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity. J Clin Endocrinol Metab 89:3949–3955

    CAS  PubMed  Google Scholar 

  • Cowley BD Jr, Smardo FL Jr, Grantham JJ, Calvet JP (1987) Elevated c-myc protooncogene expression in autosomal recessive polycystic kidney disease. Proc Natl Acad Sci U S A 84:8394–8398

    PubMed Central  CAS  PubMed  Google Scholar 

  • Croner RS, Brueckl WM, Reingruber B, Hohenberger W, Guenther K (2005) Age and manifestation related symptoms in familial adenomatous polyposis. BMC Cancer 5:24

    PubMed Central  PubMed  Google Scholar 

  • Dekel B, Burakova T, Arditti FD, Reich-Zeliger S, Milstein O, Aviel-Ronen S et al (2003) Human and porcine early kidney precursors as a new source for transplantation. Nat Med 9:53–60

    CAS  PubMed  Google Scholar 

  • Dixon JL, Stoops JD, Parker JL, Laughlin MH, Weisman GA, Sturek M (1999) Dyslipidemia and vascular dysfunction in diabetic pigs fed an atherogenic diet. Arterioscler Thromb Vasc Biol 19:2981–2992

    CAS  PubMed  Google Scholar 

  • Edwards AO, Miedziak A, Vrabec T, Verhoeven J, Acott TS, Weleber RG et al (1999) Autosomal dominant Stargardt-like macular dystrophy: I. Clinical characterization, longitudinal follow-up, and evidence for a common ancestry in families linked to chromosome 6q14. Am J Ophthalmol 127:426–435

    CAS  PubMed  Google Scholar 

  • Fischer A, Cavazzana-Calvo M, De Saint Basile G, DeVillartay JP, Di Santo JP, Hivroz C et al (1997) Naturally occurring primary deficiencies of the immune system. Annu Rev Immunol 15:93–124

    CAS  PubMed  Google Scholar 

  • Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B et al (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One 6:e21045. doi:10.1371/journal.pone.0021045

    PubMed Central  CAS  PubMed  Google Scholar 

  • Flisikowska T, Merkl C, Landmann M, Eser S, Rezaei N, Cui X et al (2012) A porcine model of familial adenomatous polyposis. Gastroenterology 143:1173–1175.e7

    CAS  PubMed  Google Scholar 

  • Fodde R, Smits R (2001) Disease model: familial adenomatous polyposis. Trends Mol Med 7:369–373

    CAS  PubMed  Google Scholar 

  • Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7:645–658

    CAS  PubMed  Google Scholar 

  • Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R et al (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gabow PA (1993) Autosomal dominant polycystic kidney disease. Am J Kidney Dis 22:511–512

    CAS  PubMed  Google Scholar 

  • Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C et al (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373:523–527

    CAS  PubMed  Google Scholar 

  • Grantham JJ (2008) Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med 359:1477–1485

    CAS  PubMed  Google Scholar 

  • Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF et al (2012) Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393–398

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guilbault C, Saeed Z, Downey GP, Radzioch D (2007) Cystic fibrosis mouse models. Am J Respir Cell Mol Biol 36:1–7

    CAS  PubMed  Google Scholar 

  • Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE et al (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306:234–238

    CAS  PubMed  Google Scholar 

  • Hao YH, Yong HY, Murphy CN, Wax D, Samuel M, Rieke A et al (2006) Production of endothelial nitric oxide synthase (eNOS) over-expressing piglets. Transgenic Res 15:739–750

    CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    CAS  PubMed  Google Scholar 

  • Hasty AH, Shimano H, Osuga J, Namatame I, Takahashi A, Yahagi N et al (2001) Severe hypercholesterolemia, hypertriglyceridemia, and atherosclerosis in mice lacking both leptin and the low density lipoprotein receptor. J Biol Chem 276:37402–37408

    CAS  PubMed  Google Scholar 

  • Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A et al (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A 108:12013–12017

    PubMed Central  CAS  PubMed  Google Scholar 

  • He J, Ye J, Li Q, Feng Y, Bai X, Chen X et al (2013) Construction of a transgenic pig model overexpressing polycystic kidney disease 2 (PKD2) gene. Transgenic Res 22:861–867

    CAS  PubMed  Google Scholar 

  • Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH et al (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–483

    CAS  PubMed  Google Scholar 

  • Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    CAS  PubMed  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S et al (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    CAS  PubMed  Google Scholar 

  • Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH et al (2000) A mouse model for spinal muscular atrophy. Nat Genet 24:66–70

    CAS  PubMed  Google Scholar 

  • Humphries MM, Rancourt D, Farrar GJ, Kenna P, Hazel M, Bush RA et al (1997) Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nat Genet 15:216–219

    CAS  PubMed  Google Scholar 

  • Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J (1993) Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 92:883–893

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jacobsen JC, Bawden CS, Rudiger SR, McLaughlan CJ, Reid SJ, Waldvogel HJ et al (2010) An ovine transgenic Huntington’s disease model. Hum Mol Genet 19:1873–1882

    CAS  PubMed  Google Scholar 

  • Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86

    CAS  PubMed  Google Scholar 

  • Kashiwakura Y, Mimuro J, Onishi A, Iwamoto M, Madoiwa S, Fuchimoto D et al (2012) Porcine model of hemophilia A. PLoS One 7(11):e49450. doi:10.1371/journal.pone.0049450

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kimberling WJ, Kumar S, Gabow PA, Kenyon JB, Connolly CJ, Somlo S (1993) Autosomal dominant polycystic kidney disease: localization of the second gene to chromosome 4q13-q23. Genomics 18:467–472

    CAS  PubMed  Google Scholar 

  • Klymiuk N, Blutke A, Graf A, Krause S, Burkhardt K, Wuensch A et al (2013) Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum Mol Genet 22:4368–4382

    CAS  PubMed  Google Scholar 

  • Knowles JW, Maeda N (2000) Genetic modifiers of atherosclerosis in mice. Arterioscler Thromb Vasc Biol 20:2336–2345

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koenig M, Beggs AH, Moyer M, Scherpf S, Heindrich K, Bettecken T et al (1989) The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 45:498–506

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kragh PM, Nielsen AL, Li J, Du Y, Lin L, Schmidt M et al (2009) Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw. Transgenic Res 18:545–558

    CAS  PubMed  Google Scholar 

  • Lanoix J, D’Agati V, Szabolcs M, Trudel M (1996) Dysregulation of cellular proliferation and apoptosis mediates human autosomal dominant polycystic kidney disease (ADPKD). Oncogene 13:1153–1160

    CAS  PubMed  Google Scholar 

  • Lauer N, Suvorava T, Rüther U, Jacob R, Meyer W, Harrison DG et al (2005) Critical involvement of hydrogen peroxide in exercise-induced up-regulation of endothelial NO synthase. Cardiovasc Res 65:254–262

    CAS  PubMed  Google Scholar 

  • Leblond V, Autran B, Cesbron JY (1997) The SCID mouse mutant: definition and potential use as a model for immune and hematological disorders. Hematol Cell Ther 39:213–221

    CAS  PubMed  Google Scholar 

  • Leonard WJ (1996) The molecular basis of X-linked severe combined immunodeficiency: defective cytokine receptor signaling. Annu Rev Med 47:229–239

    CAS  PubMed  Google Scholar 

  • Leuchs S, Saalfrank A, Merkl C, Flisikowska T, Edlinger M, Durkovic M et al (2012) Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs. PLoS One 7:e43323. doi:10.1371/journal.pone.0043323

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li XJ, Li S (2012) Influence of species differences on the neuropathology of transgenic Huntington’s disease animal models. J Genet Genomics 39:239–245

    CAS  PubMed  Google Scholar 

  • Li T, Snyder WK, Olsson JE, Dryja TP (1996) Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments. Proc Natl Acad Sci U S A 93:14176–14181

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 96:6307–6311

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lorson MA, Spate LD, Samuel MS, Murphy CN, Lorson CL, Prather RS et al (2011) Disruption of the Survival Motor Neuron (SMN) gene in pigs using ssDNA. Transgenic Res 20:1293–1304

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu W, Peissel B, Babakhanlou H, Pavlova A, Geng L, Fan X et al (1997) Perinatal lethality with kidney and pancreas defects in mice with a targetted Pkd1 mutation. Nat Genet 17:179–181

    CAS  PubMed  Google Scholar 

  • Lu H, Huang D, Ransohoff RM, Zhou L (2011) Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair. FASEB J 25:3344–3355

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luo Y, Li J, Liu Y, Lin L, Du Y, Li S et al (2011) High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgenic Res 20:975–988

    CAS  PubMed  Google Scholar 

  • Mannucci PM, Tuddenham EG (2001) The hemophilias—from royal genes to gene therapy. N Engl J Med 344:1773–1779

    CAS  PubMed  Google Scholar 

  • Martignoni M, Groothuis GM, de Kanter R (2006) Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2:875–894

    CAS  PubMed  Google Scholar 

  • Mashimo T, Takizawa A, Voigt B, Yoshimi K, Hiai H, Kuramoto T et al (2010) Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS One 5:e8870. doi:10.1371/journal.pone.0008870

    PubMed Central  PubMed  Google Scholar 

  • Mashimo T, Takizawa A, Kobayashi J, Kunihiro Y, Yoshimi K, Ishida S et al (2012) Generation and characterization of severe combined immunodeficiency rats. Cell Rep 2:685–694

    CAS  PubMed  Google Scholar 

  • McCalla-Martin AC, Chen X, Linder KE, Estrada JL, Piedrahita JA (2010) Varying phenotypes in swine versus murine transgenic models constitutively expressing the same human Sonic hedgehog transcriptional activator, K5-HGLI2 Delta N. Transgenic Res 19:869–887

    CAS  PubMed  Google Scholar 

  • McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405:1066–1069

    CAS  PubMed  Google Scholar 

  • Midgley CA, Lane DP (1997) p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15:1179–1189

    CAS  PubMed  Google Scholar 

  • Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ et al (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342

    CAS  PubMed  Google Scholar 

  • Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AH et al (1999) A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 8:1177–1183

    CAS  PubMed  Google Scholar 

  • Morrison AE, Ludlam CA, Kessler C (1993) Use of porcine factor VIII in the treatment of patients with acquired hemophilia. Blood 81:1513–1520

    CAS  PubMed  Google Scholar 

  • Mousavi SA, Berge KE, Leren TP (2009) The unique role of proprotein convertase subtilisin/kexin 9 in cholesterol homeostasis. J Intern Med 266:507–519

    CAS  PubMed  Google Scholar 

  • Mussolino C, Cathomen T (2013) RNA guides genome engineering. Nat Biotechnol 31:208–209

    CAS  PubMed  Google Scholar 

  • Nakamura A, Takeda S (2011) Mammalian models of Duchenne Muscular Dystrophy: pathological characteristics and therapeutic applications. J Biomed Biotechnol 2011:184393. doi:10.1155/2011/184393

    PubMed Central  PubMed  Google Scholar 

  • Nauck MA, El-Ouaghlidi A, Gabrys B, Hücking K, Holst JJ, Deacon CF et al (2004) Secretion of incretin hormones (GIP and GLP-1) and incretin effect after oral glucose in first-degree relatives of patients with type 2 diabetes. Regul Pept 122:209–217

    CAS  PubMed  Google Scholar 

  • Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471

    CAS  PubMed  Google Scholar 

  • Noguchi M, Yi H, Rosenblatt HM, Filipovich AH, Adelstein S, Modi WS et al (2008) Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. J Immunol 181:5817–5827

    CAS  PubMed  Google Scholar 

  • Olsson JE, Gordon JW, Pawlyk BS, Roof D, Hayes A, Molday RS et al (1992) Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron 9:815–830

    CAS  PubMed  Google Scholar 

  • Parekh AK, Barton MB (2010) The challenge of multiple comorbidity for the US health care system. JAMA 303:1303–1304

    CAS  PubMed  Google Scholar 

  • Petters RM, Alexander CA, Wells KD, Collins EB, Sommer JR, Blanton MR et al (1997) Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol 15:965–970

    CAS  PubMed  Google Scholar 

  • Pignatelli PM, Pound SE, Carothers AD, Macnicol AM, Allan PL, Watson ML et al (1992) Multipoint mapping of adult onset polycystic kidney disease (PKD1) on chromosome 16. J Med Genet 29:638–641

    PubMed Central  CAS  PubMed  Google Scholar 

  • Plum L, Wunderlich FT, Baudler S, Krone W, Brüning JC (2005) Transgenic and knockout mice in diabetes research: novel insights into pathophysiology, limitations, and perspectives. Physiology (Bethesda) 20:152–161

    CAS  Google Scholar 

  • Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG et al (1999) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353

    Google Scholar 

  • Pritchard L, Sloane-Stanley JA, Sharpe JA, Aspinwall R, Lu W, Buckle V et al (2000) A human PKD1 transgene generates functional polycystin-1 in mice and is associated with a cystic phenotype. Hum Mol Genet 9:2617–2627

    CAS  PubMed  Google Scholar 

  • Renner S, Fehlings C, Herbach N, Hofmann A, von Waldthausen DC, Kessler B et al (2010) Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 59:1228–1238

    PubMed Central  CAS  PubMed  Google Scholar 

  • Renner S, Römisch-Margl W, Prehn C, Krebs S, Adamski J, Göke B et al (2012) Changing metabolic signatures of amino acids and lipids during the prediabetic period in a pig model with impaired incretin function and reduced beta-cell mass. Diabetes 61:2166–2175

    PubMed Central  CAS  PubMed  Google Scholar 

  • Renner S, Braun-Reichhart C, Blutke A, Herbach N, Emrich D, Streckel E et al (2013) Permanent neonatal diabetes in INS(C94Y) transgenic pigs. Diabetes 62(5):1505–1511

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reznikov LR, Dong Q, Chen JH, Moninger TO, Park JM, Zhang Y et al (2013) CFTR-deficient pigs display peripheral nervous system defects at birth. Proc Natl Acad Sci U S A 110:3083–3038

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82

    CAS  PubMed  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    CAS  PubMed  Google Scholar 

  • Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y et al (2008a) Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 118:1571–1577

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ et al (2008b) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321:1837–1841

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ross JW, Fernandez de Castro JP, Zhao J, Samuel M, Walters E, Rios C et al (2012) Generation of an inbred miniature pig model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 53:501–507

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–870

    CAS  PubMed  Google Scholar 

  • Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M et al (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130–2133

    CAS  PubMed  Google Scholar 

  • Schrank B, Götz R, Gunnersen JM, Ure JM, Toyka KV, Smith AG et al (1997) Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci U S A 94:9920–9925

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110:3507–3512

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sommer JR, Estrada JL, Collins EB, Bedell M, Alexander CA, Yang Z et al (2011) Production of ELOVL4 transgenic pigs: a large animal model for Stargardt-like macular degeneration. Br J Ophthalmol 95:1749–1754

    PubMed  Google Scholar 

  • Soutar AK (2011) Unexpected roles for PCSK9 in lipid metabolism. Curr Opin Lipidol 22:192–196

    CAS  PubMed  Google Scholar 

  • Spurney CF (2011) Cardiomyopathy of Duchenne muscular dystrophy: current understanding and future directions. Muscle Nerve 44:8–19

    PubMed  Google Scholar 

  • Stoltz DA, Rokhlina T, Ernst SE, Pezzulo AA, Ostedgaard LS, Karp PH et al (2013) Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. J Clin Invest 123:2685–2693

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki S, Iwamoto M, Saito Y, Fuchimoto D, Sembon S, Suzuki M et al (2012) Il2rg gene-targeted severe combined immunodeficiency pigs. Cell Stem Cell 10:753–758

    CAS  PubMed  Google Scholar 

  • Takakura A, Contrino L, Zhou X, Bonventre JV, Sun Y, Humphreys BD et al (2009) Renal injury is a third hit promoting rapid development of adult polycystic kidney disease. Hum Mol Genet 18:2523–2531

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takeuchi A, Irizarry MC, Duff K, Saido TC, Hsiao Ashe K, Hasegawa M et al (2000) Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss. Am J Pathol 157:331–339

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA, Hackett PB et al (2013) Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci U S A 110:16526–16531

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas S, Kotamraju S, Zielonka J, Harder DR, Kalyanaraman B (2007) Hydrogen peroxide induces nitric oxide and proteosome activity in endothelial cells: a bell-shaped signaling response. Free Radic Biol Med 42:1049–1061

    PubMed Central  CAS  PubMed  Google Scholar 

  • Toschi V (2010) OBI-1, porcine recombinant Factor VIII for the potential treatment of patients with congenital hemophilia A and alloantibodies against human Factor VIII. Curr Opin Mol Ther 12:617–625

    CAS  PubMed  Google Scholar 

  • Uchida M, Shimatsu Y, Onoe K, Matsuyama N, Niki R, Ikeda JE et al (2001) Production of transgenic miniature pigs by pronuclear microinjection. Transgenic Res 10:577–582

    CAS  PubMed  Google Scholar 

  • Umeyama K, Watanabe M, Saito H, Kurome M, Tohi S, Matsunari H et al (2009) Dominant-negative mutant hepatocyte nuclear factor 1alpha induces diabetes in transgenic-cloned pigs. Transgenic Res 18:697–706

    CAS  PubMed  Google Scholar 

  • Vickers P (2009) Severe combined immune deficiency: early hospitalisation and isolation. Wiley-Blackwell, Chichester

    Google Scholar 

  • Wei J, Ouyang H, Wang Y, Pang D, Cong NX, Wang T et al (2012) Characterization of a hypertriglyceridemic transgenic miniature pig model expressing human apolipoprotein CIII. FEBS J 279:91–99

    CAS  PubMed  Google Scholar 

  • Whyte JJ, Samuel M, Mahan E, Padilla J, Simmons GH, Arce-Esquivel AA et al (2011) Vascular endothelium-specific overexpression of human catalase in cloned pigs. Transgenic Res 20:989–1001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M et al (1996) Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 384:455–458

    CAS  PubMed  Google Scholar 

  • Yamagata K, Yang Q, Yamamoto K, Iwahashi H, Miyagawa J, Okita K et al (1998) Mutation P291fsinsC in the transcription factor hepatocyte nuclear factor-1alpha is dominant negative. Diabetes 47:1231–1235

    CAS  PubMed  Google Scholar 

  • Yamakawa H, Nagai T, Harasawa R, Yamagami T, Takahashi J, Ishikawa KI et al (1999) Production of transgenic pig carrying MMTV/v-Ha-ras. J Reprod Dev 45:111–118

    CAS  Google Scholar 

  • Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng EC et al (2008) Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453:921–924

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang D, Wang CE, Zhao B, Li W, Ouyang Z, Liu Z et al (2010) Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum Mol Genet 19:3983–3994

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z et al (2011) Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res 21:979–982

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ye J, He J, Li Q, Feng Y, Bai X, Chen X et al (2013) Generation of c-Myc transgenic pigs for autosomal dominant polycystic kidney disease. Transgenic Res, Mar 30 [Epub ahead of print]

  • Zaidi A, Schmoeckel M, Bhatti F, Waterworth P, Tolan M, Cozzi E et al (1998) Life-supporting pig-to-primate renal xenotransplantation using genetically modified donors. Transplantation 65:1584–1590

    CAS  PubMed  Google Scholar 

  • Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471

    CAS  PubMed  Google Scholar 

  • Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90:905–981

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Flisikowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flisikowska, T., Kind, A. & Schnieke, A. Genetically modified pigs to model human diseases. J Appl Genetics 55, 53–64 (2014). https://doi.org/10.1007/s13353-013-0182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-013-0182-9

Keywords

Navigation