Skip to main content
Log in

The Promise of Stem Cell Research in Pigs and Other Ungulate Species

  • Hypothesis and Commentary
  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Despite two decades of effort, establishment of pluripotent embryonic stem cells (ESC) from ungulates such as cattle and pigs has remained an elusive goal, with true ESC only successfully isolated from rodents and primates. The many reports describing ESC-like cultures from other “difficult” species has largely depended upon adopting strategies successful for mouse and human and have not yet produced a cell type that both proliferated continuously in culture without differentiation and demonstrated full pluripotent potential. These difficulties may have been exacerbated in ungulates by the lack of specific markers exclusive to inner cell mass (ICM) and its derivative the epiblast and by unique features of their preimplantation development. Especially important may have been the choice of culture condition, including growth factors, for establishing and sustaining the ESC. Recent modifications to culture medium, notably the inclusion of particular protein kinase inhibitors, have permitted ESC derivation from rat and previously “non-permissive” mouse strains. These conditions appear to stabilize the biochemical networks that sustain pluripotency and to render the cells dependent upon LIF signaling. In addition, the recent successful generation of induced pluripotent stem cells (iPSC) from pig by procedures that should be easily adapted to other species, is also likely to advance the area quickly. The pig is a particularly desirable species to create pluripotent cell lines because of its value as a biomedical model in transplantation at a time when there is mounting pressure to rush stem cells to the clinic before their safety has been adequately tested in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.

    Article  CAS  PubMed  Google Scholar 

  2. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78, 7634–7638.

    Article  CAS  PubMed  Google Scholar 

  3. Eistetter, H. R. (1989). Pluripotent embryonal stem cells can be established from disaggregated mouse morulae. Development, Growth & Differentiation, 31, 275–282.

    Article  Google Scholar 

  4. Delhaise, F., Bralion, V., Schuurbiers, N., & Dessy, F. (1996). Establishment of an embryonic stem cell line from 8-cell stage mouse embryos. European Journal of Morphology, 34, 237–243.

    Article  CAS  PubMed  Google Scholar 

  5. Thomson, J. A., Kalishman, J., Golos, T. G., et al. (1995). Isolation of a primate embryonic stem cell line. Proceedings of the National Academy of Science of the United States of America, 92, 7844–7848.

    Article  CAS  Google Scholar 

  6. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  7. Reubinoff, B. E., Pera, M. F., Fong, C.-Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology, 18, 399–404.

    Article  CAS  PubMed  Google Scholar 

  8. Lee, J. B., Lee, J. E., Park, J. H., et al. (2005). Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition. Biology of Reproduction, 72, 42–49.

    Article  CAS  PubMed  Google Scholar 

  9. Godkin, J. D., Bazer, F. W., & Roberts, R. M. (1985). Protein production by cultures established from day-14–16 sheep and pig conceptuses. Journal of Reproduction & Fertility, 74, 377–382.

    CAS  Google Scholar 

  10. Notarianni, E., Laurie, S., Moor, R. M., & Evans, M. J. (1990). Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. Journal of Reproduction & Fertility Suppl, 41, 51–56.

    CAS  Google Scholar 

  11. Notarianni, E., Galli, C., Laurie, S., Moor, R. M., & Evans, M. J. (1991). Derivation of pluripotent, embryonic cell lines from the pig and sheep. Journal of Reproduction & Fertility Suppl, 43, 255–260.

    CAS  Google Scholar 

  12. Doetschman, T., Williams, P., & Maeda, N. (1988). Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Developmental Biology, 127, 224–227.

    Article  CAS  PubMed  Google Scholar 

  13. Hatoya, S., Torii, R., Kondo, Y., et al. (2006). Isolation and characterization of embryonic stem-like cells from canine blastocysts. Molecular Reproduction and Development, 73, 298–305.

    Article  CAS  PubMed  Google Scholar 

  14. Yu, X., Jin, G., Yin, X., et al. (2008). Isolation and characterization of embryonic stem-like cells derived from in vivo-produced cat blastocysts. Molecular Reproduction and Development, 75, 1426–1432.

    Article  CAS  PubMed  Google Scholar 

  15. Sukoyan, M. A., Vatolin, S. Y., Golubitsa, A. N., Zhelezova, A. I., Semenova, L. A., & Serov, O. L. (1993). Embryonic stem cells derived from morulae, inner cell mass, and blastocysts of mink: comparisons of their pluripotencies. Molecular Reproduction and Development, 36, 148–158.

    Article  CAS  PubMed  Google Scholar 

  16. Schoonjans, L., Albright, G. M., Li, J. L., Collen, D., & Moreadith, R. W. (1996). Pluripotential rabbit embryonic stem (ES) cells are capable of forming overt coat color chimeras following injection into blastocysts. Molecular Reproduction and Development, 45, 439–443.

    Article  CAS  PubMed  Google Scholar 

  17. Saito, S., Ugai, H., Sawai, K., et al. (2002). Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro. Federation of European Biochemical Societies Letters, 531, 389–396.

    CAS  PubMed  Google Scholar 

  18. Stice, S. L., Strelchenko, N. S., Keefer, C. L., & Matthews, L. (1996). Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer. Biology of Reproduction, 54, 100–110.

    Article  CAS  PubMed  Google Scholar 

  19. Strelchenko, N. (1996). Bovine pluripotent stem cells. Theriogenology, 45, 131.

    Article  Google Scholar 

  20. Evans, M. J., Notarianni, E., Laurie, S., & Moor, R. M. (1990). Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts. Theriogenology, 33, 125–128.

    Article  Google Scholar 

  21. Piedrahita, J. A., Anderson, G. B., & Bondurant, R. H. (1990). On the isolation of embryonic stem cells: comparative behavior of murine, porcine and ovine embryos. Theriogenology, 34, 879–901.

    Article  CAS  PubMed  Google Scholar 

  22. Buehr, M., Meek, S., Blair, K., et al. (2008). Capture of authentic embryonic stem cells from rat blastocysts. Cell, 135, 1287–1298.

    Article  CAS  PubMed  Google Scholar 

  23. Li, P., Tong, C., Mehrian-Shai, R., et al. (2008). Germline competent embryonic stem cells derived from rat blastocysts. Cell, 135, 1299–1310.

    Article  CAS  PubMed  Google Scholar 

  24. Wobus, A. M., & Boheler, K. R. (2005). Embryonic stem cells: prospects for developmental biology and cell therapy. Physiological Reviews, 85, 635–678.

    Article  CAS  PubMed  Google Scholar 

  25. Wobus, A. M. (2001). Potential of embryonic stem cells. Molecular Aspects of Medicine, 22, 149–164.

    Article  CAS  PubMed  Google Scholar 

  26. Evans, M. (2005). Embryonic stem cells: a perspective. Novartis Foundation Symposium, 265, 98–103, discussion 103–106, 122–108.

    Article  PubMed  Google Scholar 

  27. Thomas, K. R., Folger, K. R., & Capecchi, M. R. (1986). High frequency targeting of genes to specific sites in the mammalian genome. Cell, 44, 419–428.

    Article  CAS  PubMed  Google Scholar 

  28. Doetschman, T., Gregg, R. G., Maeda, N., et al. (1987). Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature, 330, 576–578.

    Article  CAS  PubMed  Google Scholar 

  29. Rogers, C. S., Stoltz, D. A., Meyerholz, D. K., et al. (2008). Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science, 321, 1837–1841.

    Article  CAS  PubMed  Google Scholar 

  30. Roberts, R. M., Telugu, B. P., & Ezashi, T. (2009). Induced pluripotent stem cells from swine (Sus scrofa). Why they may prove to be important. Cell Cycle, 8, 1–4.

    Google Scholar 

  31. Anderson, G. B., Choi, S. J., & Bondurant, R. H. (1994). Survival of porcine inner cell masses in culture and after injection into blastocysts. Theriogenology, 42, 204–212.

    Article  CAS  PubMed  Google Scholar 

  32. Chen, L. R., Shiue, Y. L., Bertolini, L., Medrano, J. F., BonDurant, R. H., & Anderson, G. B. (1999). Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology, 52, 195–212.

    Article  CAS  PubMed  Google Scholar 

  33. Hochereau-de Reviers, M. T., & Perreau, C. (1993). In vitro culture of embryonic disc cells from porcine blastocysts. Reproduction, Nutrition, Development, 33, 475–483.

    Article  CAS  PubMed  Google Scholar 

  34. Keefer, C. L., Pant, D., Blomberg, L., & Talbot, N. C. (2007). Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Animal Reproduction Science, 98, 147–168.

    Article  CAS  PubMed  Google Scholar 

  35. Strojek, R. M., Reed, M. A., Hoover, J. L., & Wagner, T. E. (1990). A method for cultivating morphologically undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology, 33, 901–913.

    Article  CAS  PubMed  Google Scholar 

  36. Nagashima, H., Giannakis, C., Ashman, R. J., & Nottle, M. B. (2004). Sex differentiation and germ cell production in chimeric pigs produced by inner cell mass injection into blastocysts. Biology of Reproduction, 70, 702–707.

    Article  CAS  PubMed  Google Scholar 

  37. Onishi, A., Takeda, K., Komatsu, M., Akita, T., & Kojima, T. (1994). Production of chimeric pigs and the analysis of chimerism using mitochondrial deoxyribonucleic acid as a cell marker. Biology of Reproduction, 51, 1069–1075.

    Article  CAS  PubMed  Google Scholar 

  38. Saito, S., Sawai, K., Ugai, H., et al. (2003). Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochemical Biophysical Research Communications, 309, 104–113.

    Article  CAS  Google Scholar 

  39. Munoz, M., Rodriguez, A., De Frutos, C., et al. (2008). Conventional pluripotency markers are unspecific for bovine embryonic stem cell lines. Theriogenology, 69, 1159–1164.

    Article  CAS  PubMed  Google Scholar 

  40. Iwasaki, S., Campbell, K. H., Galli, C., & Akiyama, K. (2000). Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biology of Reproduction, 62, 470–475.

    Article  CAS  PubMed  Google Scholar 

  41. Roach, M., Wang, L., Yang, X., & Tian, X. C. (2006). Bovine embryonic stem cells. Methods in Enzymology, 418, 21–37.

    Article  CAS  PubMed  Google Scholar 

  42. Talbot, N. C., Powell, A. M., & Rexroad, C. E., Jr. (1995). In vitro pluripotency of epiblasts derived from bovine blastocysts. Molecular Reproduction and Development, 42, 35–52.

    Article  CAS  PubMed  Google Scholar 

  43. Cibelli, J. B., Stice, S. L., Golueke, P. J., et al. (1998). Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nature Biotechnology, 16, 642–646.

    Article  CAS  PubMed  Google Scholar 

  44. Gjorret, J. O., & Maddox-Hyttel, P. (2005). Attempts towards derivation and establishment of bovine embryonic stem cell-like cultures. Reproduction, Fertility, and Development, 17, 113–124.

    Article  CAS  PubMed  Google Scholar 

  45. Mitalipova, M., Beyhan, Z., & First, N. L. (2001). Pluripotency of bovine embryonic cell line derived from precompacting embryos. Cloning, 3, 59–67.

    Article  CAS  PubMed  Google Scholar 

  46. Anderson, G. B., BonDurant, R. H., Goff, L., Groff, J., & Moyer, A. L. (1996). Development of bovine and porcine embryonic teratomas in athymic mice. Animal Reproduction Science, 45, 231–240.

    Article  CAS  PubMed  Google Scholar 

  47. Piedrahita, J. A., Moore, K., Oetama, B., et al. (1998). Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biology of Reproduction, 58, 1321–1329.

    Article  CAS  PubMed  Google Scholar 

  48. Sigrid, M., Katja, P., Norman, R., et al. (1999). Chimeric pigs following blastocyst injection of transgenic porcine primordial germ cells. Molecular Reproduction and Development, 54, 244–254.

    Article  Google Scholar 

  49. Shim, H., Gutierrez-Adan, A., Chen, L. R., BonDurant, R. H., Behboodi, E., & Anderson, G. B. (1997). Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biology of Reproduction, 57, 1089–1095.

    Article  CAS  PubMed  Google Scholar 

  50. Rui, R., Shim, H., Moyer, A. L., et al. (2004). Attempts to enhance production of porcine chimeras from embryonic germ cells and preimplantation embryos. Theriogenology, 61, 1225–1235.

    Article  PubMed  Google Scholar 

  51. Brevini, T. A., Antonini, S., Cillo, F., Crestan, M., & Gandolfi, F. (2007). Porcine embryonic stem cells: facts, challenges and hopes. Theriogenology, 68(Suppl 1), S206–S213.

    Article  CAS  PubMed  Google Scholar 

  52. Talbot, N. C., & le Blomberg, A. (2008). The pursuit of ES cell lines of domesticated ungulates. Stem Cell Review, 4, 235–254.

    Article  CAS  Google Scholar 

  53. Robertson, E. J. (1987). Teratocarcinomas and embryonic stem cells, a practical approach. Washington: IRL.

    Google Scholar 

  54. Kawase, E., Suemori, H., Takahashi, N., Okazaki, K., Hashimoto, K., & Nakatsuji, N. (1994). Strain difference in establishment of mouse embryonic stem (ES) cell lines. International Journal of Developmental Biology, 38, 385–390.

    CAS  PubMed  Google Scholar 

  55. McWhir, J., Schnieke, A. E., Ansell, R., et al. (1996). Selective ablation of differentiated cells permits isolation of embryonic stem cell lines from murine embryos with a non-permissive genetic background. Nature Genetics, 14, 223–226.

    Article  CAS  PubMed  Google Scholar 

  56. Dvash, T., & Benvenisty, N. (2004). Human embryonic stem cells as a model for early human development. Best Practice and Research Clinical Obstetrics & Gynaecology, 18, 929–940.

    Article  Google Scholar 

  57. Hunter, R. H. (1974). Chronological and cytological details of fertilization and early embryonic development in the domestic pig, Sus scrofa. Anatomical Record, 178, 169–185.

    Article  CAS  PubMed  Google Scholar 

  58. Renard, J. P., & Heyman, Y. (1979). Variable development of superovulated bovine embryos between day 6 and day 12. Annale Biologica Animale Biochimica et Biophysica, 19, 1589–1598.

    Article  Google Scholar 

  59. Betteridge, K. J., & Flechon, J.-E. (1988). The anatomy and physiology of pre-attachment bovine embryos. Theriogenology, 29, 155–187.

    Article  Google Scholar 

  60. Telugu, B. P., & Green, J. A. (2007). Comparative placentation. Iowa: Blackwell.

    Google Scholar 

  61. Hall, V. J., Christensen, J., Gao, Y., Schmidt, M. H., & Hyttel, P. (2009). Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development. Developmental Dynamics, 238, 2014–2024.

    Article  CAS  PubMed  Google Scholar 

  62. Flechon, J. E., Degrouard, J., & Flechon, B. (2004). Gastrulation events in the prestreak pig embryo: ultrastructure and cell markers. Genesis, 38, 13–25.

    Article  PubMed  Google Scholar 

  63. Maddox-Hyttel, P., Alexopoulos, N. I., Vajta, G., et al. (2003). Immunohistochemical and ultrastructural characterization of the initial post-hatching development of bovine embryos. Reproduction, 125, 607–623.

    Article  CAS  PubMed  Google Scholar 

  64. Perry, J. S. (1981). The mammalian fetal membranes. Journal of Reproduction Fertility, 62, 321–335.

    Article  CAS  PubMed  Google Scholar 

  65. King, G. J. (1993). Comparative placentation in ungulates. Journal of Experimental Zoology, 266, 588–602.

    Article  CAS  PubMed  Google Scholar 

  66. van Eijk, M. J., van Rooijen, M. A., Modina, S., et al. (1999). Molecular cloning, genetic mapping, and developmental expression of bovine POU5F1. Biology of Reproduction, 60, 1093–1103.

    Article  PubMed  Google Scholar 

  67. Kirchhof, N., Carnwath, J. W., Lemme, E., Anastassiadis, K., Scholer, H., & Niemann, H. (2000). Expression pattern of Oct-4 in preimplantation embryos of different species. Biology of Reproduction, 63, 1698–1705.

    Article  CAS  PubMed  Google Scholar 

  68. He, S., Pant, D., Schiffmacher, A., et al. (2006). Developmental expression of pluripotency determining factors in caprine embryos: novel pattern of NANOG protein localization in the nucleolus. Molecular Reproduction and Development, 73, 1512–1522.

    Article  CAS  PubMed  Google Scholar 

  69. Magnani, L., & Cabot, R. A. (2008). In vitro and in vivo derived porcine embryos possess similar, but not identical, patterns of Oct4, Nanog, and Sox2 mRNA expression during cleavage development. Molecular Reproduction and Development, 75, 1726–1735.

    Article  CAS  PubMed  Google Scholar 

  70. Blomberg, L. A., Schreier, L. L., & Talbot, N. C. (2008). Expression analysis of pluripotency factors in the undifferentiated porcine inner cell mass and epiblast during in vitro culture. Molecular Reproduction and Development, 75, 450–463.

    Article  CAS  PubMed  Google Scholar 

  71. Degrelle, S. A., Campion, E., Cabau, C., et al. (2005). Molecular evidence for a critical period in mural trophoblast development in bovine blastocysts. Developmental Biology, 288, 448–460.

    Article  CAS  PubMed  Google Scholar 

  72. Blomberg, L., Hashizume, K., & Viebahn, C. (2008). Blastocyst elongation, trophoblastic differentiation, and embryonic pattern formation. Reproduction, 135, 181–195.

    Article  CAS  PubMed  Google Scholar 

  73. Vejlsted, M., Avery, B., Schmidt, M., Greve, T., Alexopoulos, N., & Maddox-Hyttel, P. (2005). Ultrastructural and immunohistochemical characterization of the bovine epiblast. Biology of Reproduction, 72, 678–686.

    Article  CAS  PubMed  Google Scholar 

  74. Talbot, N. C., Caperna, T. J., Edwards, J. L., Garrett, W., Wells, K. D., & Ealy, A. D. (2000). Bovine blastocyst-derived trophectoderm and endoderm cell cultures: interferon tau and transferrin expression as respective in vitro markers. Biology of Reproduction, 62, 235–247.

    Article  CAS  PubMed  Google Scholar 

  75. Talbot, N. C., Caperna, T. J., Powell, A. M., Ealy, A. D., Blomberg, L. A., & Garrett, W. M. (2005). Isolation and characterization of a bovine visceral endoderm cell line derived from a parthenogenetic blastocyst. In Vitro Cellular Development & Biology—Animal, 41, 130–141.

    Article  CAS  Google Scholar 

  76. Flechon, J. E., Laurie, S., & Notarianni, E. (1995). Isolation and characterization of a feeder-dependent, porcine trophectoderm cell line obtained from a 9-day blastocyst. Placenta, 16, 643–658.

    Article  CAS  PubMed  Google Scholar 

  77. Shimada, A., Nakano, H., Takahashi, T., Imai, K., & Hashizume, K. (2001). Isolation and characterization of a bovine blastocyst-derived trophoblastic cell line, BT-1: development of a culture system in the absence of feeder cell. Placenta, 22, 652.

    Article  CAS  PubMed  Google Scholar 

  78. Munoz, M., Diez, C., Caamano, J. N., Jouneau, A., Hue, I., & Gomez, E. (2008). Embryonic stem cells in cattle. Reproduction in Domestic Animals, 43(Suppl 4), 32–37.

    Article  PubMed  Google Scholar 

  79. Brevini, T. A., Tosetti, V., Crestan, M., Antonini, S., & Gandolfi, F. (2007). Derivation and characterization of pluripotent cell lines from pig embryos of different origins. Theriogenology, 67, 54–63.

    Article  PubMed  Google Scholar 

  80. Li, M., Ma, W., Hou, Y., Sun, X. F., Sun, Q. Y., & Wang, W. H. (2004). Improved isolation and culture of embryonic stem cells from Chinese miniature pig. Journal of Reproduction and Development, 50, 237–244.

    Article  PubMed  Google Scholar 

  81. Wianny, F., Perreau, C., & Hochereau de Reviers, M. T. (1997). Proliferation and differentiation of porcine inner cell mass and epiblast in vitro. Biology of Reproduction, 57, 756–764.

    Article  CAS  PubMed  Google Scholar 

  82. Piedrahita, J. A., Anderson, G. B., & Bondurant, R. H. (1990). Influence of feeder layer type on the efficiency of isolation of porcine embryo-derived cell lines. Theriogenology, 34, 865–877.

    Article  CAS  PubMed  Google Scholar 

  83. Esteban, M. A., Xu, J., Yang, J., et al. (2009). Generation of induced pluripotent stem cell lines from tibetan miniature pig. Journal of Biological Chemistry, 284, 17634–17640.

    Article  CAS  PubMed  Google Scholar 

  84. Ezashi, T., Telugu, B. P., Alexenko, A. P., Sachdev, S., Sinha, S., & Roberts, R. M. (2009). Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 10993–10998.

    Article  CAS  PubMed  Google Scholar 

  85. Wu, Z., Chen, J., Ren, J., et al. (2009). Generation of pig-induced pluripotent stem cells with a drug-inducible system. Journal of Molecular Cell Biology, 1, 46–54.

    Article  PubMed  CAS  Google Scholar 

  86. Tesar, P. J., Chenoweth, J. G., Brook, F. A., et al. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 448, 196–199.

    Article  CAS  PubMed  Google Scholar 

  87. Brons, I. G., Smithers, L. E., Trotter, M. W., et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448, 191–195.

    Article  CAS  PubMed  Google Scholar 

  88. Vejlsted, M., Avery, B., Gjorret, J. O., & Maddox-Hyttel, P. (2005). Effect of leukemia inhibitory factor (LIF) on in vitro produced bovine embryos and their outgrowth colonies. Molecular Reproduction and Development, 70, 445–454.

    Article  CAS  PubMed  Google Scholar 

  89. Rodriguez, A., De Frutos, C., Diez, C., et al. (2007). Effects of human versus mouse leukemia inhibitory factor on the in vitro development of bovine embryos. Theriogenology, 67, 1092–1095.

    Article  CAS  PubMed  Google Scholar 

  90. Hanna, J., Markoulaki, S., Mitalipova, M., et al. (2009). Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell, 4, 513–524.

    Article  CAS  PubMed  Google Scholar 

  91. Marson, A., Foreman, R., Chevalier, B., et al. (2008). Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell, 3, 132–135.

    Article  CAS  PubMed  Google Scholar 

  92. Lyssiotis, C. A., Foreman, R. K., Staerk, J., et al. (2009). Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proceeding of the Nationall Academy of Sciences of the United States of America, 106, 8912–8917.

    Article  Google Scholar 

  93. Feng, B., Ng, J. H., Heng, J. C., & Ng, H. H. (2009). Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell, 4, 301–312.

    Article  CAS  PubMed  Google Scholar 

  94. Niwa, H., Ogawa, K., Shimosato, D., & Adachi, K. (2009). A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature, 460, 118–122.

    Article  CAS  PubMed  Google Scholar 

  95. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  96. Lowry, W. E., Richter, L., Yachechko, R., et al. (2008). Generation of human induced pluripotent stem cells from dermal fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 105, 2883–2888.

    Article  CAS  PubMed  Google Scholar 

  97. Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  CAS  PubMed  Google Scholar 

  98. Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  99. Aoi, T., Yae, K., Nakagawa, M., et al. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science, 321, 699–702.

    Article  CAS  PubMed  Google Scholar 

  100. Amabile, G., & Meissner, A. (2009). Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends in Molecular Medicine, 15, 59–68.

    Article  CAS  PubMed  Google Scholar 

  101. Park, I. H., Lerou, P. H., Zhao, R., Huo, H., & Daley, G. Q. (2008). Generation of human-induced pluripotent stem cells. Nature Protocols, 3, 1180–1186.

    Article  CAS  PubMed  Google Scholar 

  102. Park, I. H., Arora, N., Huo, H., et al. (2008). Disease-specific induced pluripotent stem cells. Cell, 134, 877–886.

    Article  CAS  PubMed  Google Scholar 

  103. Maherali, N., Sridharan, R., Xie, W., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1, 55–70.

    Article  CAS  PubMed  Google Scholar 

  104. Wernig, M., Meissner, A., Foreman, R., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448, 318–324.

    Article  CAS  PubMed  Google Scholar 

  105. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317.

    Article  CAS  PubMed  Google Scholar 

  106. Feng, B., Jiang, J., Kraus, P., et al. (2009). Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nature Cell Biology, 11, 197–203.

    Article  CAS  PubMed  Google Scholar 

  107. Liu, H., Zhu, F., Yong, J., et al. (2008). Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell, 3, 587–590.

    Article  CAS  PubMed  Google Scholar 

  108. Liao, J., Cui, C., Chen, S., et al. (2009). Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell, 4, 11–15.

    Article  CAS  PubMed  Google Scholar 

  109. Zhao, X. Y., Li, W., Lv, Z., et al. (2009). iPS cells produce viable mice through tetraploid complementation. Nature, 461, 341.

    Article  CAS  Google Scholar 

  110. Kang, L., Wang, J., Zhang, Y., Kou, Z., & Gao, S. (2009). iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 5, 135–138.

    Article  CAS  PubMed  Google Scholar 

  111. Banito, A., Rashid, S. T., Acosta, J. C., et al. (2009). Senescence impairs successful reprogramming to pluripotent stem cells. Genes & Development, 23, 2134–2139.

    Article  CAS  Google Scholar 

  112. Hong, H., Takahashi, K., Ichisaka, T., et al. (2009). Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature, 460, 1132–1135.

    Article  CAS  PubMed  Google Scholar 

  113. Kawamura, T., Suzuki, J., Wang, Y. V., et al. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature, 460, 1140–1144.

    Article  CAS  PubMed  Google Scholar 

  114. Li, H., Collado, M., Villasante, A., et al. (2009). The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature, 460, 1136–1139.

    Article  CAS  PubMed  Google Scholar 

  115. Marion, R. M., Strati, K., Li, H., et al. (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature, 460, 1149–1153.

    Article  CAS  PubMed  Google Scholar 

  116. Utikal, J., Polo, J. M., Stadtfeld, M., et al. (2009). Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature, 460, 1145–1148.

    Article  CAS  PubMed  Google Scholar 

  117. Kim, J. B., Greber, B., Arauzo-Bravo, M. J., et al. (2009). Direct reprogramming of human neural stem cells by OCT4. Nature, 461, 649–653.

    Article  CAS  PubMed  Google Scholar 

  118. Haase, A., Olmer, R., Schwanke, K., et al. (2009). Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell, 5, 434–441.

    Article  CAS  PubMed  Google Scholar 

  119. Giorgetti, A., Montserrat, N., Aasen, T., et al. (2009). Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell, 5, 353–357.

    Article  CAS  PubMed  Google Scholar 

  120. Dimos, J. T., Rodolfa, K. T., Niakan, K. K., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321, 1218–1221.

    Article  CAS  PubMed  Google Scholar 

  121. Ebert, A. D., Yu, J., Rose, F. F., Jr., et al. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457, 277–280.

    Article  CAS  PubMed  Google Scholar 

  122. Hockemeyer, D., Soldner, F., Cook, E. G., Gao, Q., Mitalipova, M., & Jaenisch, R. (2008). A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell, 3, 346–353.

    Article  CAS  PubMed  Google Scholar 

  123. Soldner, F., Hockemeyer, D., Beard, C., et al. (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136, 964–977.

    Article  CAS  PubMed  Google Scholar 

  124. Li, W., Wei, W., Zhu, S., et al. (2009). Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell, 4, 16–19.

    Article  PubMed  CAS  Google Scholar 

  125. Yu, J., Hu, K., Smuga-Otto, K., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797–801.

    Article  CAS  PubMed  Google Scholar 

  126. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322, 949–953.

    Article  CAS  PubMed  Google Scholar 

  127. Kim, D., Kim, C. H., Moon, J. I., et al. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4, 472–476.

    Article  CAS  PubMed  Google Scholar 

  128. Zhou, H., Wu, S., Joo, J. Y., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by NIH HD42201 & HD21896 (R.M.R.), and Missouri Life Sciences Research Board Grant # 09-1018 (T.E.).

Conflict of Interest

All authors claim no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhanu Prakash V. L. Telugu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Telugu, B.P.V.L., Ezashi, T. & Roberts, R.M. The Promise of Stem Cell Research in Pigs and Other Ungulate Species. Stem Cell Rev and Rep 6, 31–41 (2010). https://doi.org/10.1007/s12015-009-9101-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-009-9101-1

Keywords

Navigation