Skip to main content
Log in

A study on the influence of different promoter and 5′UTR (URM) cassettes from Arabidopsis thaliana on the expression level of the reporter gene β glucuronidase in tobacco and cotton

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Several reports of promoters from plants, viral and artificial origin that confer high constitutive expression are known. Among these the CaMV 35S promoter is used extensively for transgene expression in plants. We identified candidate promoters from Arabidopsis based on their transcript levels (meta-analysis of available microarray control datasets) to test their activity in comparison to the CaMV 35S promoter. A set of 11 candidate genes were identified which showed high transcript levels in the aerial tissue (i.e. leaf, shoot, flower and stem). In the initial part of the study binary vectors were developed wherein the promoter and 5′UTR region of these candidate genes (Upstream Regulatory Module, URM) were cloned upstream to the reporter gene β glucuronidase (gus). The promoter strengths were tested in transformed callus of Nicotiana tabacum and Gossypium hirsutum. On the basis of the results obtained from the callus, the influence of the URM cassettes on transgene expression was tested in transgenic tobacco. The URM regions of the genes encoding a subunit of photosystem I (PHOTO) and geranyl geranyl reductase (GGR) in A. thaliana genome showed significantly high levels of GUS activity in comparison to the CaMV 35S promoter. Further, when the 5′UTRs of both the genes were placed downstream to the CaMV 35S promoter it led to a substantial increase in GUS activity in transgenic tobacco lines and cotton callus. The enhancement observed was even higher to that observed with the viral leader sequences like Ω and AMV, known translational enhancers. Our results indicate that the two URM cassettes or the 5′UTR regions of PHOTO and GGR when placed downstream to the CaMV 35S promoter can be used to drive high levels of transgene expression in dicotyledons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal S, Jha S, Sanyal I, Amla DV (2009) Effect of point mutations in translation initiation context on the expression of recombinant human α1-proteinase inhibitor in transgenic tomato plants. Plant Cell Rep 28:1791–1798. doi:10.1007/s00299-009-0779-y

    Article  CAS  PubMed  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1990) Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J 9(6):1677–1684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhullar S, Chakravarthy S, Advani S, Datta S, Pental D, Burma PK (2003) Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis-elements in a novel DNA context versus domain swapping. Plant Physiol 132:988–998 doi: 10.1104/pp.103.020602

    Google Scholar 

  • Bhullar S, Chakravarthy S, Pental D, Burma PK (2009) Analysis of promoter activity in transgenic plants by normalizing expression with a reference gene: anomalies due to the influence of the test promoter on the reference promoter. J Biosci 34:953–962

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cheadle C, Vawter MP, Freed WJ, Becker KG (2003) Analysis of microarray data using Z score transformation. J Mol Diagn 5:73–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Comai L, Moran P, Maslyar D (1990) Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol Biol 15:373–381

    Article  CAS  PubMed  Google Scholar 

  • Dansako T, Kato K, Satoh J, Sekine M, Yoshida K, Shinmyo A (2003) 5′ Untranslated region of the HSP18.2 gene contributes to efficient translation in plant cells. J Biosci Bioeng 95:52–58

    CAS  PubMed  Google Scholar 

  • Datla RSS, Bekkaoui F, Hammerlindl JK, Pilate G, Dunstan DI, Crosby WL (1993) Improved high-level constitutive foreign gene expression in plants using an AMV RNA4 untranslated leader sequence. Plant Sci 94:139–149

    Article  CAS  Google Scholar 

  • De Almeida ERP, Gossele V, Muller CG, Dockx J, Reynaerts A, Botterman J, Krebbers E, Timko MP (1989) Transgenic expression of two marker genes under the control of an Arabidopsis rbcS promoter: sequences encoding the Rubisco transit peptide increase expression levels. Mol Gen Genet 218:78–86

    Article  Google Scholar 

  • Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28:427–435. doi:10.1016/j.biotechadv.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  • Dey N, Maiti I (1999) Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Mol Biol 40:771–782

    Article  CAS  PubMed  Google Scholar 

  • Gallie DR (1993) Posttranscriptional regulation of gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 44:77–105

    Article  CAS  Google Scholar 

  • Gallie DR (1996) Translational control of cellular and viral mRNAs. Plant Mol Biol 32:145–158

    Article  CAS  PubMed  Google Scholar 

  • Gallie D, Walbot V (1992) Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation. Nucleic Acids Res 20(17):4631–4638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA (1987) The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res 15:3257–3273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gehrke L, Auron PE, Quigley GJ, Rich A, Sonenberg N (1983) 5′-Conformation of capped alfalfa mosaic virus ribonucleic acid may reflect its independence of the cap structure or of cap-binding protein for efficient translation. Biochemistry 22:5157–5164

    Article  CAS  PubMed  Google Scholar 

  • Giannino D, Condello E, Bruno L, Testone G, Tartarini A, Cozza R, Innocenti AM, Bitonti MB, Mariotti D (2004) The gene geranylgeranyl reductase of peach (Prunus persica [L.] Batsch) is regulated during leaf development and responds differentially to distinct stress factors. J Exp Bot 55:2063–2073. doi:10.1093/jxb/erh217

    Article  CAS  PubMed  Google Scholar 

  • Gittins JR, Pellny TK, Hiles ER, Rosa C, Biricolti S, James DJ (2000) Transgene expression driven by heterologous ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene promoters in the vegetative tissues of apple (Malus pumila Mill). Planta 210:232–240

    Article  CAS  PubMed  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small versatile pZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  CAS  PubMed  Google Scholar 

  • Hull R, Covey SN, Dale P (2000) Genetically modified plants and the 35S promoter: assessing the risks and enhancing the debate. Microb Ecol Health Dis 12:1–5

    CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5(4):387–405

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    Google Scholar 

  • Joshi JP, Zhou H, Huang X, Chiang VL (1997) Context sequences of translation initiation codon in plants. Plant Mol Biol 35:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Kanoria S, Burma PK (2012) A 28 nt long synthetic 50UTR (synJ) as an enhancer of transgene expression in dicotyledonous plants. BMC Biotechnol 12:85. doi:10.1186/1472-6750-12-85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kapusta J, Modelska A, Figlerowicz M, Pniewski T, Letellier M, Lisowa O, Yusibov V, Koprowski H, Plucienniczak A, Legocki AB (1999) A plant-derived edible vaccine against hepatitis B virus. FASEB J 13:1796–1799

    CAS  PubMed  Google Scholar 

  • Kawalleck P, Somssich IE, Feldburgge M, Hahlbrock K, Weisshaar B (1993) Polyubiquitin gene expression and structural properties of the ubi4-2 gene in Petroselinum crispum. Plant Mol Biol 21:673–684

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Timko MP (2004) Enhanced tissue-specific expression of the herbicide resistance bar gene in transgenic cotton (Gossypium hirsutum L cv. Coker 310FR) using the Arabidopsis rbcS ats1A promoter. Plant Biotechnol 21:251–259

    Article  CAS  Google Scholar 

  • Kumar S, Sharma P, Pental D (1998) A genetic approach to in vitro regeneration of non-generating cotton (Gossypium hirsutum L.) cultivars. Plant Cell Rep 18:59–63

    Article  CAS  Google Scholar 

  • Luehrsen K, Walbot V (1994) The impact of AUG start codon context on maize gene expression in vivo. Plant Cell Rep 13:454–458

    Article  CAS  PubMed  Google Scholar 

  • Lukaszewicz M, Feuermann M, Jerouville B, Stas A, Boutry M (2000) In vivo evaluation of the context sequence of the translation initiation codon in plants. Plant Sci 154(1):89–98

    Article  CAS  PubMed  Google Scholar 

  • Lutcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J 6(1):43–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maiti IB, Gowda S, Kiernan J, Ghosh SK, Shepherd RJ (1997) Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Res 6:143–156

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Matsuura H, Sawada K, Takita E, Kinjo S, Takenami S, Ueda K, Nishigaki N, Yamasaki S, Hata K, Yamaguchi M, Demura T, Kato K (2012) High level expression of transgenes by use of 5′-untranslated region of the Arabidopsis thaliana arabinogalactan-protein 21 gene in dicotyledons. Plant Biotechnol 29:319–322. doi:10.5511/plantbiotechnology.12.0322a

    Article  CAS  Google Scholar 

  • McGarvey PB, Hammond J, Dienelt MM, Hooper DC, Fu ZF, Dietzschold B, Koprowski H, Michaels FH (1995) Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology 13:1484–1487

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37:49–59

    Article  CAS  PubMed  Google Scholar 

  • Nap JP, Van Spanje M, Dirske WG, Baarda G, Mlynarova L, Loonen A, Grondhuis P, Stiekema WJ (1993) Activity of the promoter of the Lhca3.St/1 gene, encoding the potato apo protein 2 of the light harvesting complex of photosystem 1 in transgenic potato and tobacco plants. Plant Mol Biol 23:605–612

    Article  CAS  PubMed  Google Scholar 

  • Odell J, Nagy F, Chua N (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  CAS  PubMed  Google Scholar 

  • Outchkourov NS, Peters J, de Jong J, Rademakers W, Jongsma MA (2003) The promoter-terminator of chrysanthemum rbcS1 directs very high expression levels in plants. Planta 216:1003–1012

    CAS  PubMed  Google Scholar 

  • Peach C, Velten J (1991) Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17:49–60

    Article  CAS  PubMed  Google Scholar 

  • Peremarti A, Twyman RM, Gómez-Galera S, Naqvi S, Farré G, Sabalza M, Miralpeix B, Dashevskaya S, Yuan D, Ramessar K, Christou P, Zhu C, Bassie L, Capell T (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73(4–5):363–378. doi:10.1007/s11103-010-9628-1

    Article  CAS  PubMed  Google Scholar 

  • Rawat P, Ray K, Pental D, Burma PK (2008) Mutant acetolactate synthase gene conferring resistance to the herbicide ‘imazethapyr’ is an efficient in vitro selection marker for genetic transformation of cotton. Curr Sci 95(10):1454–1457

    CAS  Google Scholar 

  • Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, Doyle A, Garcia-Hernandez M, Huala E, Lander G, Montoya M, Miller N, Mueller LA, Mundodi S, Reiser L, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J, Zhang P (2003) The Arabidopsis information resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31:224–228

    Article  CAS  PubMed  Google Scholar 

  • Robinson SJ, Parkin IAP (2008) Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature. BMC Genomics 9:434. doi:10.1186/1471-2164-9-434

    Article  PubMed Central  PubMed  Google Scholar 

  • Sanger M, Daubert S, Goodman RM (1990) Characteristics of a strong promoter from figwort mosaic virus: comparison with the analogous 35S promoter from cauliflower mosaic virus and the regulated mannopine synthase promoter. Plant Mol Biol 14:433–443

    Article  CAS  PubMed  Google Scholar 

  • Satoh J, Kato K, Shinmyo A (2004) The 5′-untranslated region of the tobacco alcohol dehydrogenase gene functions as an effective translational enhancer in plant. J Biosci Bioeng 98:1–8

    Article  CAS  PubMed  Google Scholar 

  • Sawant SV, Singh PK, Gupta SK, Madanala R, Tuli R (1999) Conserved nucleotide sequence in highly expressed genes in plants. J Genet 78:123–131

    Article  CAS  Google Scholar 

  • Schenk PM, Sagi L, Remans T, Dietzgen RG, Bernard M, Graham M, Manners JM (1999) A promoter from sugarcane bacilliform badnarvirus drives transgene expression in banana and other monocot and dicot species. Plant Mol Biol 39:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Remans T, Sagi L, Elliot A, Dietzgen RG, Swennen R, Ebert P, Grof CPL, Manners JM (2001) Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol Biol 47:399–412

    Article  CAS  PubMed  Google Scholar 

  • Soitamo AJ, Piipo M, Allahverdiyeva Y, Battchikova N, Aro E-M (2008) Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol 8:13. doi:10.1186/1471-2229-8-13

    Article  PubMed Central  PubMed  Google Scholar 

  • Song P, Heinen JL, Burns TH, Allen RD (2000) Expression of two tissue-specific promoters in transgenic cotton plants. J Cot Sci 4:217–223

    CAS  Google Scholar 

  • Stavolone L, Kononova M, Pauli S, Ragozzino A, Haan P, Milligan S, Lawton K, Hohn T (2003) Cestrum yellow leaf curling virus (CmYLCV) promoter: a new strong constitutive promoter for heterologous gene expression in a wide variety of crops. Plant Mol Biol 53:703–713

    Article  Google Scholar 

  • Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15

    Article  CAS  PubMed  Google Scholar 

  • Sugio T, Matsuura H, Matsui T, Matsunaga M, Nosho T, Kanaya S, Shinmyo A, Kato K (2010) Effect of the sequence context of the AUG initiation codon on the rate of translation in dicotyledonous and monocotyledonous plant cells. J Biosci Bioeng 109(2):170–173. doi:10.1016/j.jbiosc.2009.07.009

    Article  CAS  PubMed  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1995) Generation of transgenic tobacco plants by cocultivation of leaf disks with Agrobacterium pPZP binary vectors. In: Maliga P (ed) Methods in plant molecular biology: a laboratory course manual. Cold Spring Harbor Laboratory Press, Plainview NY, pp 55–77

    Google Scholar 

  • Taylor JL, Jones JDG, Sandier S, Mueller GM, Bedbrook JR, Dunsmuir P (1987) Optimizing the expression of chimeric genes in plant cells. Mol Gen Genet 210:572–577

    Article  CAS  Google Scholar 

  • Töpfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res 15(14):5890

    Article  PubMed Central  PubMed  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578. doi:10.1016/j.tibtech.2003.10.002

    Article  CAS  PubMed  Google Scholar 

  • Tzafrir I, Torbert K, Lockhart B, Somers D, Olszewski E (1998) The sugarcane bacilliform badnavirus promoter is active in both monocots and dicots. Plant Mol Biol 38:347–356

    Article  CAS  PubMed  Google Scholar 

  • Verdaguer B, De Kochko A, Fux CI, Beachy RN, Fauquet C (1998) Functional organization of the cassava vein mosaic virus (CsVMV) promoter. Plant Mol Biol 37:1055–1067

    Article  CAS  PubMed  Google Scholar 

  • Wever W, McCallum EJ, Chakravorty D, Cazzonelli CI, Botella JR (2010) The 5′ untranslated region of the VR-ACS1 mRNA acts as a strong translational enhancer in plants. Transgenic Res 19(4):667–674. doi:10.1007/s11248-009-9332-6

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto YY, Tsuji H, Obokata J (1995) 5′Leader of a photosystem I gene in Nicotiana sylvestris, psaDb, contains a translational enhancer. J Biol Chem 270:12466–12470

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415. doi:10.1093/nar/gkg595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by grant in aids from University Grants Commission, India under their Special Assistance Program and from the University of Delhi. PA and SK was supported by a fellowship from Council for Scientific and Industrial Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar Burma.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, P., Garg, V., Gautam, T. et al. A study on the influence of different promoter and 5′UTR (URM) cassettes from Arabidopsis thaliana on the expression level of the reporter gene β glucuronidase in tobacco and cotton. Transgenic Res 23, 351–363 (2014). https://doi.org/10.1007/s11248-013-9757-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9757-9

Keywords

Navigation