Skip to main content
Log in

Effect of point mutations in translation initiation context on the expression of recombinant human α1-proteinase inhibitor in transgenic tomato plants

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The functional and biological significance of translation initiation context sequence in determining high-level expression of modified synthetic human α1-proteinase inhibitor (α1-PI) gene was documented in stable transgenic tomato plants. Context sequence of initiator ATG codon derived from statistical analysis of databases was identified as taaA(A/C)aATGGCt in highly expressed dicot plant genes. Removal of initiator ATG context sequence reduced the expression of recombinant α1-PI protein to fourfolds. The mutation of consensus base at +4 position to a pyrimidine either alone or with substitution at −3 position eliminated most of the α1-PI expression, while mutation at −3 alone resulted in about sevenfold reduction. The presence of steady-state levels of α1-PI transcript in transgenic plants indicated that the variation in expression is entirely due to the point mutations incorporated in translation initiation context. These results indicated the significance of conserved nucleotide sequence around initiator ATG codon in augmenting post-transcriptional events and high-level expression of heterologous genes in transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TIC:

Translation initiation context

ELISA:

Enzyme-linked immunosorbent assay

TSP:

Total soluble protein

α1-PI:

α1-proteinase inhibitor

AMV:

Alfalfa mosaic virus

ER:

Endoplasmic reticulum

References

  • Agarwal S, Singh R, Sanyal I, Amla DV (2008) Expression of modified gene encoding functional human alpha-1-antitrypsin protein in transgenic tomato plants. Transgenic Res 17:881–896

    Article  CAS  PubMed  Google Scholar 

  • Ashraf S, Singh PK, Yadav DK, Shahnawaz M, Mishra S, Sawant SV, Tuli R (2005) High-level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. J Biotechnol 119:1–14

    Article  CAS  PubMed  Google Scholar 

  • Boyd L, Thummel CS (1993) Selection of CUG and AUG initiator codons for Drosophila E74A translation depends on downstream sequences. Proc Natl Acad Sci USA 90:9164–9167

    Article  CAS  PubMed  Google Scholar 

  • Cavener DR (1987) Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res 15:1353–1361

    Article  CAS  PubMed  Google Scholar 

  • Guerineau F, Lucy A, Mullineaux P (1992) Effect of two consensus sequences preceding the translation initiator codon on gene expression in plant protoplasts. Plant Mol Biol 18:815–818

    Article  CAS  PubMed  Google Scholar 

  • Iida Y, Kanagu D (2000) Quantification analysis of translation initiation signal in vertebrate mRNAs: effect of nucleotides at positions +4~+6 upon efficiency of translation initiation. Nucleic Acids Symp Ser 44:77–78

    PubMed  Google Scholar 

  • Johnston JC, Rochon DM (1996) Both codon context and leader length contribute to efficient expression of two overlapping open reading frames of a cucumber necrosis virus bifunctional sub-genomic mRNA. Virology 221:232–239

    Article  CAS  PubMed  Google Scholar 

  • Joshi CP, Zhou H, Huang X, Chiang VL (1997) Context sequences of translation initiation codon in plants. Plant Mol Biol 35:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292

    Article  CAS  PubMed  Google Scholar 

  • Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Article  CAS  PubMed  Google Scholar 

  • Kozak M (1990) Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc Natl Acad Sci USA 87:8301–8305

    Article  CAS  PubMed  Google Scholar 

  • Kozak M (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234:187–208

    Article  CAS  PubMed  Google Scholar 

  • Kozak M (2002) Pushing the limits of the scanning mechanism for initiation of translation. Gene 299:1–34

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Xue Q (2005) Comparative studies on sequence characteristics around translation initiation codon in four eukaryotes. J Genet 84:317–322

    Article  CAS  PubMed  Google Scholar 

  • Luehrsen KR, Walbot V (1994) The impact of AUG start codon context on maize gene expression in vivo. Plant Cell Rep 13:454–458

    Article  CAS  Google Scholar 

  • Lukaszewicz M, Feuermann M, Je′rouville B, Stas A, Boutry M (2000) In vivo evaluation of the context sequence of the translation initiation codon in plants. Plant Sci 154:89–98

    Article  CAS  PubMed  Google Scholar 

  • Lutcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J 6:43–48

    CAS  PubMed  Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Branason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–84

    Article  CAS  Google Scholar 

  • Mishra S, Yadav DK, Tuli R (2006) Ubiquitin fusion enhances cholera toxin B subunit expression in transgenic plants and the plant-expressed protein binds GM1 receptors more efficiently. J Biotechnol 127:95–108

    Article  CAS  PubMed  Google Scholar 

  • Miyasaka H, Kanai S, Tanaka S, Akiyama H, Hirano M (2002) Statistical analysis of the relationship between translation initiation AUG context and gene expression level in humans. Biosci Biotechnol Biochem 66:667–669

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Niimura Y, Gojobori T, Tanaka H, Miura KI (2008) Diversity of preferred nucleotide sequences around the translation initiation codon in eukaryote genomes. Nucleic Acids Res 36:861–871

    Article  CAS  PubMed  Google Scholar 

  • Peach C, Velten J (1991) Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17:49–60

    Article  CAS  PubMed  Google Scholar 

  • Ruan Y, Gilmore J, Conner T (1998) Towards Arabidopsis genome analysis: monitoring expression profiles of 1400 genes using DNA microarrays. Plant J 15:821–833

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sawant SV, Singh PK, Gupta SK, Madanala R, Tuli R (1999) Conserved nucleotide sequence in highly expressed genes in plants. J Genet 78:123–131

    Article  CAS  Google Scholar 

  • Sawant SV, Kiran K, Singh PK, Tuli R (2001) Sequence architecture downstream of the initiator codon enhances gene expression and protein stability in plants. Plant Physiol 126:1630–1636

    Article  CAS  PubMed  Google Scholar 

  • Smit De MH, van Duin J (1990) Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci USA 87:7668–7672

    Article  Google Scholar 

  • Sullivan ML, Green PJ (1993) Post-transcriptional regulation of nuclear-encoded genes in higher plants: the roles of mRNA stability and translation. Plant Mol Biol 23:1091–1104

    Article  CAS  PubMed  Google Scholar 

  • Taylor JL, Jones JDG, Sandler S, Mueller GM, Bedbrook J, Dunsmuir P (1987) Optimizing the expression of chimeric genes in plant cells. Mol Gen Genet 210:572–577

    Article  CAS  Google Scholar 

  • Wilde CD, Houdt HV, Buck SD, Angenon G, Jaeger GD, Depicker A (2000) Plant as bioreactors for protein production: avoiding the problem of transgene silencing. Plant Mol Biol 43:347–359

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Director, NBRI, Lucknow for infrastructural support, encouragement and valuable suggestions. We thankfully acknowledge Council of Scientific and Industrial Research (CSIR), India for providing funds and senior research fellowships to SA and SJ. This work was carried out under the CSIR Network Project CMM0004 and OLP 0031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Amla.

Additional information

Communicated by P. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, S., Jha, S., Sanyal, I. et al. Effect of point mutations in translation initiation context on the expression of recombinant human α1-proteinase inhibitor in transgenic tomato plants. Plant Cell Rep 28, 1791–1798 (2009). https://doi.org/10.1007/s00299-009-0779-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0779-y

Keywords

Navigation