Skip to main content
Log in

Early Blight Resistance of Transgenic Potato Plants Expressing the ProSmAMP1 Gene for Antimicrobial Peptides under the Control of a Light-Inducible Cab Promoter

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The genome of Stellaria media contains a gene family for hevein-like antimicrobial peptides, some of which are known to encode two peptides released from the translation product as a result of post-translational proteolysis. These peptides have been shown to inhibit the growth of bacteria and fungi, including potato pathogens Alternaria solani and Alternaria alternata. One of these genes, ProSmAMP1, was introduced into the potato genome under the control of the light-inducible promoter of Cab gene from common wheat. The resulting transgenic lines expressed ProSmAMP1 mRNA during several vegetative passages, and their resistance to early blight was assessed by several indicators of detached leaf infection, with plants having the highest expression of the transgene also showing the highest resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Schepers, H., Hausladen, H., and Hansen, J.G., Epidemics and control of early and late blight, 2017 and 2018 in Europe, Proceedings of the Seventeenth EuroBlight Workshop, 2019, vol. 19, p. 11. https://agro.au.dk/fileadmin/ euroblight/Workshops/Proceedings/Special_Report_19_ Totaal_LR.pdf.

  2. Gravesen, S., Fungi as a cause of allergic disease, Allergy, 1979, vol. 34, p. 135. https://doi.org/10.1111/J.1398-9995.1979.TB01562.X

    Article  CAS  PubMed  Google Scholar 

  3. Tsedaley, B., Review on early blight (Alternaria spp.) of potato disease and its management options, J. Biol. Agricul. Healthcare, 2014, vol. 4, p. 191. https://www.iiste. org/Journals/index.php/JBAH/article/view/18650.

    Google Scholar 

  4. Adolf, B., Andrade-Piedra, J., Bittara Molina, F., Przetakiewicz, J., Hausladen, H., Kromann, P., Lees, A., Lindqvist-Kreuze, H., Perez, W., and Secor, G.A., Fungal, oomycete, and plasmodiophorid diseases of potato, The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind, 2019, vol. 9, p. 307. https://doi.org/10.1007/978-3-030-28683-5_9

    Article  Google Scholar 

  5. Van Der Waals, J.E., Korsten, L., and Aveling, T.A.S., A review of early blight of potato, Afr. Plant Prot., 2001, vol. 7, p. 1.

    Google Scholar 

  6. Kumar, C. A., Yadav, J., Kumar, G. A., and Gupta, K., Integrated disease management of early blight (Alternaria Solani) of potato, Trop. Agrobiodiv., 2021, vol. 2, p. 77. https://doi.org/10.26480/trab.02.2021.77.81

    Article  Google Scholar 

  7. Shinde, B.A., Dholakia, B.B., Hussain, K., Panda, S., Meir, S., Rogachev, I., Aharoni, A., Giri, A.P., and Kamble, A.C., Dynamic metabolic reprogramming of steroidal glycol-alkaloid and phenylpropanoid biosynthesis may impart early blight resistance in wild tomato (Solanum arcanum Peralta), Plant Mol. Biol., 2017, vol. 95, p. 411. https://doi.org/10.1007/S11103-017-0660-2/FIGURES/7

    Article  CAS  PubMed  Google Scholar 

  8. Roddick, J.G. and Rijnenberg, A.L., Effect of steroidal glycoalkaloids of the potato on the permeability of liposome membranes, Physiol. Plant, 1986, vol. 68, p. 436. https://doi.org/10.1111/j.1399-3054.1986.tb03378.x

    Article  CAS  Google Scholar 

  9. Yamunarani, K., Jaganathan, R., Bhaskaran, R., Govindaraju, P., and Velazhahan, R., Induction of early blight resistance in tomato by Quercus infectoria gall extract in association with accumulation of phenolics and defense-related enzymes, Acta Physiol. Plant., 2004, vol. 26, p. 281. https://doi.org/10.1007/S11738-004-0018-7

    Article  CAS  Google Scholar 

  10. Johansen, T.J. and Mølmann, J.A.B., Seed potato performance after storage in light at elevated temperatures, Potato Res., 2018, vol. 61, p. 133. https://doi.org/10.1007/S11540-018-9363-6/FIGURES/3

    Article  Google Scholar 

  11. Henrique, S.S.D., Zambolim, L., Rodrigues, F.A., Paul, P.A., Pádua, J.G., and Ribeiro, J.I., Field resistance of potato cultivars to foliar early blight and its relationship with foliage maturity and tuber skin types, Trop. Plant Path., 2014, vol. 39, p. 294.

    Article  Google Scholar 

  12. Busnello, F.J., Boff, M.I.C., Agostinetto, L., Souza, Z. da S., and Boff, P., Potato genotypes reaction to early blight and late blight in organic cultivation, Ciência Rural, 2019, vol. 49. https://doi.org/10.1590/0103-8478CR20180469

  13. Weber, B.N. and Jansky, S.H., Resistance to Alternaria solani in hybrids between a Solanum tuberosum haploid and S. raphanifolium, Phytopathology, 2012, vol. 102, p. 214. https://doi.org/10.1094/PHYTO-05-11-0146

    Article  CAS  PubMed  Google Scholar 

  14. Odintsova, T.I., Slezina, M.P., Istomina, E.A., Korostyleva, T.V., Kasianov, A.S., Kovtun, A.S., Makeev, V.J., Shcherbakova, L.A., and Kudryavtsev, A.M., Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: A focus on structural diversity and role in induced resistance, Peer J., 2019, vol. 2019, p. e6125. https://doi.org/10.7717/PEERJ.6125/SUPP-16

    Article  Google Scholar 

  15. Toufiq, N., Tabassum, B., Bhatti, M.U., Khan, A., Tariq, M., Shahid, N., Nasir, I.A., and Husnain, T., Improved antifungal activity of barley derived chitinase I gene that overexpress a 32kDa recombinant chitinase in Escherichia coli host, Braz. J. Microbiol., 2018, vol. 49, p. 414. https://doi.org/10.1016/J.BJM.2017.05.007

    Article  CAS  PubMed  Google Scholar 

  16. Moravčíková, J., Matušíková, I., Libantová, J., Bauer, M., and Mlynárová, L., Expression of a cucumber class III chitinase and Nicotiana plumbaginifoliaclass I glucanase genes in transgenic potato plants, Plant Cell, Tissue Organ Cult., 2004, vol. 79, p. 161. https://doi.org/10.1007/S11240-004-0656-X

    Article  Google Scholar 

  17. Islam, K.T., Velivelli, S.L.S., Berg, R.H., Oakley, B., and Shah, D.M., A novel bi-domain plant defensin MtD-ef5 with potent broad-spectrum antifungal activity binds to multiple phospholipids and forms oligomers, Sci. Rep., 2017, vol. 7, p. 16157. https://doi.org/10.1038/s41598-017-16508-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, X., Xie, W.J., and Gong, Z.Z., Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba, FEBS Letters, 2000, vol. 478, p. 123. https://doi.org/10.1016/S0014-5793(00)01834-2

    Article  CAS  PubMed  Google Scholar 

  19. Vasilchenko, A.S., Smirnov, A.N., Zavriev, S.K., Grishin, E.V., Vasilchenko, A.V., and Rogozhin, E.A., Novel thionins from black seed (Nigella sativa L.) demonstrate antimicrobial activity, Int. J. Pept. Res. Therap., 2017, vol. 23, p. 171. https://doi.org/10.1007/S10989-016-9549-1/FIGURES/5

    Article  CAS  Google Scholar 

  20. Mithril, C. and Dragsted, L.O., Safety evaluation of some wild plants in the New Nordic Diet, Food Chem. Toxicol., 2012, vol. 50, p. 4461. https://doi.org/10.1016/J.FCT.2012.09.016

    Article  CAS  PubMed  Google Scholar 

  21. Yilmaz, S. and Ergün, S., Chickweed (Stellaria media) leaf meal as a feed ingredient for tilapia (Oreochromis mossambicus), J. Appl. Aquac., 2013, vol. 25, p. 329. https://doi.org/10.1080/10454438.2013.851531

    Article  Google Scholar 

  22. Rogowska, M., Lenart, M., Srečec, S., Ziaja, M., Parzonko, A., and Bazylko, A., Chemical composition, antioxidative and enzyme inhibition activities of chickweed herb (Stelaria media L., Vill.) ethanolic and aqueous extracts, Ind. Crops Prod., 2017, vol. 97, p. 448. https://doi.org/10.1016/J.INDCROP.2016.12.058

    Article  CAS  Google Scholar 

  23. Shukurov, R.R., Voblikova, V.D., Nikonorova, A.K., Komakhin, R.A., Komakhina, V.V., Egorov, T.A., Grishin, E.V., and Babakov, A.V., Transformation of tobacco and Arabidopsis plants with Stellaria media genes encoding novel hevein-like peptides increases their resistance to fungal pathogens, Transgenic Res., 2012, vol. 21, p. 313. https://doi.org/10.1007/s11248-011-9534-6

    Article  CAS  Google Scholar 

  24. Vetchinkina, E.M., Komakhina, V.V., Vysotskii, D.A., Zaitsev, D.V., Smirnov, A.N., Babakov, A.V., and Komakhin, R.A., Expression of plant antimicrobial peptide pro-SmAMP2 gene increases resistance of transgenic potato plants to Alternaria and Fusarium pathogens, Russ. J. Genet., 2016, vol. 52, p. 939. https://doi.org/10.1134/s1022795416080147

    Article  CAS  Google Scholar 

  25. Beliaev, D.V., Yuorieva, N.O., Tereshonok, D.V., Tashlieva, I.I., Derevyagina, M.K., Meleshin, A.A., Rogozhin, E.A., and Kozlov, S.A., High resistance of potato to early blight is achieved by expression of the Pro-SmAMP1 gene for hevein-like antimicrobial peptides from common chickweed (Stellaria media), Plants, 2021, vol. 10, p. 1395. https://doi.org/10.3390/PLANTS10071395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Muhammad, A.F., Naz, F., and Irshad, G., Important fungal diseases of potato and their management—a brief review, Mycopath., 2013, vol. 11, p. 45.

    Google Scholar 

  27. Timerbaev, V. and Dolgov, S., Functional characterization of a strong promoter of the early light-inducible protein gene from tomato, Planta, 2019, vol. 250, p. 1307. https://doi.org/10.1007/S00425-019-03227-X

    Article  CAS  PubMed  Google Scholar 

  28. Nagy, F., Boutry, M., Hsu, M.Y., Wong, M., and Chua, N.H., The 5′-proximal region of the wheat Cab-1 gene contains a 268-bp enhancer-like sequence for phytochrome response, EMBO J., 1987, vol. 6, p. 2537. https://doi.org/10.1002/J.1460-2075.1987.TB02541.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. An, G., Integrated regulation of the photosynthetic gene family from Arabidopsis thaliana in transformed tobacco cells, Mol. General Genet., 1987, vol. 207, p. 210. https://doi.org/10.1007/BF00331580

    Article  CAS  Google Scholar 

  30. Bevan, M., Binary agrobacterium vectors for plant transformation, Nucl. Ac., Res., 1984, vol. 12, p. 8711. https://doi.org/10.1093/NAR/12.22.8711

    Article  CAS  Google Scholar 

  31. Banerjee, A.K., Prat, S., and Hannapel, D.J., Efficient production of transgenic potato (S. tuberosum L. ssp. andigena) plants via Agrobacterium tumefaciens—mediated transformation, Plant Sci., 2006, vol. 170, p. 732. https://doi.org/10.1016/j.plantsci.2005.11.007

    Article  CAS  Google Scholar 

  32. Lazo, G.R., Stein, P.A., and Ludwig, R.A., A DNA transformation–competent Arabidopsis genomic library in Agrobacterium, BioTechnology, 1991, vol. 9, p. 963. https://doi.org/10.1038/nbt1091-963

    Article  CAS  PubMed  Google Scholar 

  33. Deryabin, A.N. and Yur’eva, N.O., Formation and morphometric parameters of potato microtubers in vitro with different composition of sugars in the medium, Sel’skokhoz. Biol., 2011, vol. 1, p. 54. http://www.agrobiology.ru/1-2011deryabin-eng.html

  34. Yuorieva, N.O., Voronkov, A.S., Tereshonok, D.V., Osipova, E.S., Platonova, E.V., and Belyaev, D.V., An assay for express screening of potato transformants by GFP fluorescence, Moscow Univ. Biol. Sci. Bull., 2018, vol. 73, p. 69. https://doi.org/10.3103/s0096392518020086

    Article  Google Scholar 

  35. Nicot, N., Hausman, J.F., Hoffmann, L., and Evers, D., Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress, J. Exp. Bot., 2005, vol. 56, p. 2907. https://doi.org/10.1093/JXB/ERI285

    Article  CAS  PubMed  Google Scholar 

  36. Tzfira, T., Li, J., Lacroix, B., and Citovsky, V., Agrobacterium T-DNA integration: molecules and models, Trends Genet., 2004, vol. 20, p. 375. https://doi.org/10.1016/J.TIG.2004.06.004

    Article  CAS  PubMed  Google Scholar 

  37. Cluster, P.D., O’Dell, M., Metzlaff, M., and Flavell, R.B., Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression, Plant Mol. Biol., 1996, vol. 32, p. 1197. https://doi.org/10.1007/BF00041406

    Article  CAS  PubMed  Google Scholar 

  38. Escoubas, J.M., Lomas, M., LaRoche, J., and Falkowski, P.G., Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool, Proc. Natl. Acad. Sci., 1995, vol. 92, p. 10237. https://doi.org/10.1073/PNAS.92.22.10237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Czajka, K.M. and Nkongolo, K., Transcriptome analysis of trembling aspen (Populus tremuloides) under nickel stress, PLOS ONE, 2022, vol. 17, p. e0274740. https://doi.org/10.1371/JOURNAL.PONE.0274740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Daley, M., Knauf, V.C., Summerfelt, K.R., and Turner, J.C., Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants, Plant Cell Rep., 1998, vol. 17, p. 489. https://doi.org/10.1007/S002990050430

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme No. 122042600086-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Beliaev.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving humans and animals as research subjects.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Shulskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beliaev, D.V., Yourieva, N.O., Tereshonok, D.V. et al. Early Blight Resistance of Transgenic Potato Plants Expressing the ProSmAMP1 Gene for Antimicrobial Peptides under the Control of a Light-Inducible Cab Promoter. Russ J Plant Physiol 70, 57 (2023). https://doi.org/10.1134/S1021443722700042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722700042

Navigation