Skip to main content
Log in

Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Nitrogen-containing carbon nanostructure (CN x ) catalysts developed by acetonitrile pyrolysis have been studied to better understand their role in the oxygen reduction reaction (ORR) in PEM and direct methanol fuel cell environments. Additional functionalization of the CN x catalysts with nitric acid has the ability to improve both the activity and selectivity towards ORR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Latil S, Roche S, Mayou D, Charlier J-C (2004) Phys Rev Lett 92:256805

    Article  Google Scholar 

  2. Matter PH, Ozkan US (2006) Catal Lett 109:115

    Article  CAS  Google Scholar 

  3. Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2006) J Phys Chem B 110:18374

    Article  CAS  Google Scholar 

  4. Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2007) J Mol Catal 264:73

    Article  CAS  Google Scholar 

  5. Matter PH, Wang E, Ozkan US (2006) J Catal 243:395

    Article  CAS  Google Scholar 

  6. Matter PH, Zhang L, Ozkan US (2006) J Catal 239:83

    Article  CAS  Google Scholar 

  7. Matter PH, Wang E, Millet J-MM, Ozkan US (2007) J Phys Chem C 111:1444

    Article  CAS  Google Scholar 

  8. Biddinger EJ, Ozkan US (2007) Top Catal 46:339

    Article  CAS  Google Scholar 

  9. Jansinski R (1964) Nature 201:1212

    Article  Google Scholar 

  10. Jansinski R (1965) J Electrochem Soc 112:526

    Article  Google Scholar 

  11. Jahnke H, Schonborn M, Zimmerman G (1976) Fortschr Chem Forsch 61:133

    CAS  Google Scholar 

  12. van Veen JAR, van Baar JF, Kroese KJ (1981) Chem Soc Faraday Trans I 77:2827

    Article  Google Scholar 

  13. Kaisheva A, Gamburtsev S, Iliev I (1982) Sov J Electrochem 18:127

    Google Scholar 

  14. Gojkovic SL, Gupta S, Savinell RF (1998) J Electrochem Soc 145:3493

    Article  CAS  Google Scholar 

  15. Scherson DA, Gupta SL, Fierro C, Yeager EB, Kordesch ME, Eldridge J, Hoffman RW, Blue J (1983) Electrochim Acta 28:1205

    Article  CAS  Google Scholar 

  16. Martins Alves MC, Dodelet JP, Guay D, Ladouceur M, Tourillon G (1992) J Phys Chem 96:10898

    Article  Google Scholar 

  17. Shao Y, Sui J, Yin G, Gao Y (2008) Appl Catal B 79:89

    Article  CAS  Google Scholar 

  18. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  19. Yeager E (1986) J Mol Catal 38:5

    Article  CAS  Google Scholar 

  20. Lefevre M, Dodelet JP, Bertrand P (2002) J Phys Chem B 106:8705

    Article  CAS  Google Scholar 

  21. Jaouen F, Lefevre M, Dodelet J-P, Cai M (2006) J Phys Chem B 110:5553

    Article  CAS  Google Scholar 

  22. Bouwkamp-Wijnoltz AL, Visscher W, van Veen JAR, Boellaard E, van der Kraan AM, Tang SC (2002) J Phys Chem B 106:12993

    Article  CAS  Google Scholar 

  23. Wiesener K (1986) Electrochim Acta 31:1073

    Article  CAS  Google Scholar 

  24. Gojkovic S, Gupta S, Savinell R (1999) J Electroanal Chem 462:63

    Article  CAS  Google Scholar 

  25. Gouerec P, Biloul A, Contamin O, Scarbeck G, Savy M, Riga J, Weng LT, Bertrand P (1997) J Electroanal Chem 422:61

    Article  CAS  Google Scholar 

  26. Maldonado S, Stevenson KJ (2004) J Phys Chem B 108:11375

    Article  CAS  Google Scholar 

  27. Maldonado S, Stevenson KJ (2005) J Phys Chem B 109:4707

    Article  CAS  Google Scholar 

  28. Nallathambi V, Lee J-W, Kumaraguru SP, Wu G, Popov BN (2008) J Power Sources 183:34

    Article  CAS  Google Scholar 

  29. Wang P, Ma Z, Zhao Z, Jia L (2007) J Electroanal Chem 611:87

    Article  CAS  Google Scholar 

  30. Matter PH, Biddinger EJ, Ozkan US (2007) In: Spivey JJ (ed) Catalysis, vol 20. The Royal Society of Chemistry, Cambridge, UK, p 338

  31. Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM (1995) Carbon 33:1641

    Article  CAS  Google Scholar 

  32. van Dommele S, Romero-Izquirdo A, Brydson R, de Jong KP, Bitter JH (2008) Carbon 46:138

    Article  Google Scholar 

  33. Casanovas J, Ricart JM, Rubio J, Illas F, Jimenez-Mateos JM (1996) J Am Chem Soc 118:8071

    Article  CAS  Google Scholar 

  34. Jaouen F, Marcotte S, Dodelet J-P, Lindbergh G (2003) J Phys Chem B 107:1376

    Article  CAS  Google Scholar 

  35. Ros TG, van Dillen AJ, Geus JW, Koningsberger DC (2002) Chemistry 8:1151

    Article  CAS  Google Scholar 

  36. Subramanian NP, Kumaraguru SP, Colon-Mercado H, Kim H, Popov BN, Black T, Chen DA (2006) J Power Sources 157:56

    Article  CAS  Google Scholar 

  37. Wang H, Cote R, Faubert G, Guay D, Dodelet JP (1999) J Phys Chem B 103:2042

    Article  CAS  Google Scholar 

  38. Nabae Y, Yamanaka I, Otsuka K (2005) Appl Catal A-Gen 280:149

    Article  CAS  Google Scholar 

  39. Gouerec P, Savy M, Riga J (1998) Electrochim Acta 43:743

    Article  CAS  Google Scholar 

  40. Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM (1999) Carbon 37:1379

    Article  CAS  Google Scholar 

  41. Wu Z, Pittman CU Jr, Gardner SD (1995) Carbon 33:597

    Article  CAS  Google Scholar 

  42. Rasheed A, How JY, Dadmun MD, Britt PF (2007) Carbon 45:1072

    Article  CAS  Google Scholar 

  43. Xia W, Wang Y, Bergstraber R, Kundu S, Muhler M (2007) Appl Surf Sci 254:247

    Article  CAS  Google Scholar 

  44. Takoaka M, Yokokawa H, Takeda N (2007) Appl Catal B 74:179

    Article  Google Scholar 

  45. Frysz CA, Chung DDL (1997) Carbon 35:1111

    Article  CAS  Google Scholar 

  46. Krishnankutty N, Vannice MA (1995) Chem Mater 7:754

    Article  CAS  Google Scholar 

  47. Guha A, Lu W, Zawodzinski TA Jr, Schiraldi DA (2007) Carbon 45:1506

    Article  CAS  Google Scholar 

  48. Natarajan SK, Cossement D, Hamelin J (2007) J Electrochem Soc 154:B310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support provided for this work by the Department of Energy-Basic Energy Sciences (DE-FG02-07ER15896) and the National Science Foundation (CTS-0437451) is gratefully acknowledged. Authors also acknowledge the support provided by the Ohio Department of Development through the Wright Center of Innovation for Fuel Cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umit S. Ozkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biddinger, E.J., von Deak, D. & Ozkan, U.S. Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts. Top Catal 52, 1566–1574 (2009). https://doi.org/10.1007/s11244-009-9289-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9289-y

Keywords

Navigation