Skip to main content
Log in

Non-metal Catalysts for Dioxygen Reduction in an Acidic Electrolyte

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Active non-metal catalysts for the Oxygen Reduction Reaction (ORR) were prepared by decomposition of acetonitrile vapor at 900°C over a pure alumina support, and supports containing 2 wt% Fe or 2 wt% Ni on alumina. The exposed alumina and metal in the samples were subsequently washed away with HF acid to purify the solid carbon material. The sample prepared with iron was the most active sample for the ORR, with only 100 mV greater overpotential than a commercial 20 wt% Pt / Vulcan Carbon catalyst. However, nitrogen-containing carbon deposited on pure alumina (which contained less than 1 ppm metal contamination) was also quite active, demonstrating that platinum or iron is not required for ORR activity. Characterization by XPS and TEM revealed that the more active samples had nanostructured carbon with more edge plane exposure than the less active tube structures formed from the nickel sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lefevre J.-P. Dodelet (2003) Electrochimica Acta 48 2749–2760 Occurrence Handle1:CAS:528:DC%2BD3sXls1Sls7c%3D Occurrence Handle10.1016/S0013-4686(03)00393-1

    Article  CAS  Google Scholar 

  2. M. Lefevre J.P. Dodelet P. Bertrand (2000) J. Phys. Chem. B 104 11238 Occurrence Handle1:CAS:528:DC%2BD3cXnsFykt78%3D Occurrence Handle10.1021/jp002444n

    Article  CAS  Google Scholar 

  3. M. Lefevre J.P. Dodelet P. Bertrand (2002) J. Phys. Chem. B. 106 8705 Occurrence Handle1:CAS:528:DC%2BD38XlsFKmtrk%3D Occurrence Handle10.1021/jp020267f

    Article  CAS  Google Scholar 

  4. S. Gupta D. Tryk I. Bae W. Aldred E. Yeager (1989) J. Appl. Electrochem. 19 19 Occurrence Handle1:CAS:528:DyaL1MXhvVWmsrg%3D Occurrence Handle10.1007/BF01039385

    Article  CAS  Google Scholar 

  5. G. Faubert R. Cote D. Guay J.P. Dodelet G. Denes C. Poleunis P. Bertrand (1998) Electrochimica Acta 43 1969 Occurrence Handle1:CAS:528:DyaK1cXktVentrg%3D Occurrence Handle10.1016/S0013-4686(97)10120-7

    Article  CAS  Google Scholar 

  6. R. Cote G. Lalande D. Guay J.P. Dodelet G. Denes (1998) J. Electrochem. Soc 145 2411 Occurrence Handle1:CAS:528:DyaK1cXksVWhtLw%3D

    CAS  Google Scholar 

  7. H. Wang, R. Cote, G. Faubert, D. Guay, J. P. Dodelet, J. Phys. Chem. B 103 (1999).

  8. G. Lalande R. Cote D. Guay J.P. Dodelet L.T. Weng P. Bertrand (1997) Electrochimi. Acta 42 1379 Occurrence Handle1:CAS:528:DyaK2sXhvVGmtbg%3D Occurrence Handle10.1016/S0013-4686(96)00361-1

    Article  CAS  Google Scholar 

  9. G. Faubert R. Côté J.P. Dodelet M. Lefèvre P. Bertrand (1999) Electrochimica Acta 44 2589 Occurrence Handle1:CAS:528:DyaK1MXhvFaitbo%3D Occurrence Handle10.1016/S0013-4686(98)00382-X

    Article  CAS  Google Scholar 

  10. F. Jaouen S. Marcotte J.-P. Dodelet G. Lindbergh (2003) J. Phys. Chem. B 107 1376–1386 Occurrence Handle1:CAS:528:DC%2BD3sXksFKlsA%3D%3D Occurrence Handle10.1021/jp021634q

    Article  CAS  Google Scholar 

  11. S. Ye A.K. Vijh (2003) Electrochem. Comm 5 272–275 Occurrence Handle1:CAS:528:DC%2BD3sXitVKrtLg%3D Occurrence Handle10.1016/S1388-2481(03)00043-2

    Article  CAS  Google Scholar 

  12. P.H. Matter U.S. Ozkan L. Zhang (2006) J. Catal 239 83–96 Occurrence Handle1:CAS:528:DC%2BD28XitlehsbY%3D Occurrence Handle10.1016/j.jcat.2006.01.022

    Article  CAS  Google Scholar 

  13. S. Gojkovic S. Gupta R. Savinell (1999) J. Electroanaly. Chem. 462 63–72 Occurrence Handle1:CAS:528:DyaK1MXhs1Slt7s%3D Occurrence Handle10.1016/S0022-0728(98)00390-8

    Article  CAS  Google Scholar 

  14. P. Gouerec A. Biloul O. Contamin G. Scarbeck M. Savy J. Riga L.T. Weng P. Bertrand (1997) J. Electroanal. Chem 422 61 Occurrence Handle1:CAS:528:DyaK2sXivV2ltrY%3D Occurrence Handle10.1016/S0022-0728(96)04895-4

    Article  CAS  Google Scholar 

  15. K. Wiesner (1986) Electrochimica Acta 31 1073–1078 Occurrence Handle10.1016/0013-4686(86)80022-6

    Article  Google Scholar 

  16. S. Maldonado K.J. Stevenson (2004) J. Phys. Chem. B 108 11375–11383 Occurrence Handle1:CAS:528:DC%2BD2cXlsVyrt74%3D Occurrence Handle10.1021/jp0496553

    Article  CAS  Google Scholar 

  17. S. Maldonado K.J. Stevenson (2005) J. Phys. Chem. B 109 4707–4716 Occurrence Handle1:CAS:528:DC%2BD2MXhsVals7g%3D Occurrence Handle10.1021/jp044442z

    Article  CAS  Google Scholar 

  18. G. Faubert R. Cote D. Guay J.P. Dodlet G. Denes P. Bertrand (1998) Electrochimica Acta 43 341 Occurrence Handle1:CAS:528:DyaK1cXhslCgsw%3D%3D Occurrence Handle10.1016/S0013-4686(97)00087-X

    Article  CAS  Google Scholar 

  19. R.T.K. Baker (1989) Carbon 27 315–323 Occurrence Handle1:CAS:528:DyaL1MXkvF2kt7w%3D Occurrence Handle10.1016/0008-6223(89)90062-6

    Article  CAS  Google Scholar 

  20. N.M. Rodriguez (1993) J. Mater. Res 8 3233–3250 Occurrence Handle1:CAS:528:DyaK2cXmtVGjtw%3D%3D

    CAS  Google Scholar 

  21. N.M. Rodriguez A. Chambers R.T.K. Baker (1995) Langmuir 11 3862–3866 Occurrence Handle1:CAS:528:DyaK2MXotlGqtLc%3D Occurrence Handle10.1021/la00010a042

    Article  CAS  Google Scholar 

  22. C. Park M.A. Keane (2004) J. Catal 221 386–399 Occurrence Handle1:CAS:528:DC%2BD2cXnsVynuw%3D%3D Occurrence Handle10.1016/j.jcat.2003.08.014

    Article  CAS  Google Scholar 

  23. A.-C. Dupuis (2005) Prog. in Mater. Sci. 50 929–961 Occurrence Handle1:CAS:528:DC%2BD2MXntFGnt7c%3D Occurrence Handle10.1016/j.pmatsci.2005.04.003

    Article  CAS  Google Scholar 

  24. R.T.K. Baker M.S. Kim A. Chambers C. Park N.M. Rodriguez (1997) Stud. in Surf. Sci. and Catal. 111 99–109 Occurrence Handle1:CAS:528:DyaK1cXjslCisrc%3D Occurrence Handle10.1016/S0167-2991(97)80144-9

    Article  CAS  Google Scholar 

  25. T. Nakajima M. Koh (1997) Carbon 35 203 Occurrence Handle1:CAS:528:DyaK2sXhsVKgsLg%3D Occurrence Handle10.1016/S0008-6223(96)00143-1

    Article  CAS  Google Scholar 

  26. R. Kvon G. Il’inich A. Chuvilin V. Likholobov (2000) J. Mol. Catal. A: Chem. 158 413 Occurrence Handle1:CAS:528:DC%2BD3cXkvFyks7c%3D Occurrence Handle10.1016/S1381-1169(00)00115-1

    Article  CAS  Google Scholar 

  27. H.M. Liao R.N.S. Sodhi T.W. Coyle (1993) J. Vac. Sci. Technol. A 11 2681–2686 Occurrence Handle1:CAS:528:DyaK2cXhtlequw%3D%3D Occurrence Handle10.1116/1.578626

    Article  CAS  Google Scholar 

  28. J.R. Pels F. Kapteijn J.A. Moulijn Q. Zhu K.M. Thomas (1995) Carbon 33 1641–1653 Occurrence Handle1:CAS:528:DyaK2MXpslaqu7w%3D Occurrence Handle10.1016/0008-6223(95)00154-6

    Article  CAS  Google Scholar 

  29. J. Casanovas J.M. Ricart J. Rubio F. Illas J.M. Jimenez-Mateos (1996) J. Am. Chem. Soc 118 8071–8076 Occurrence Handle1:CAS:528:DyaK28Xksl2gu70%3D Occurrence Handle10.1021/ja960338m

    Article  CAS  Google Scholar 

  30. K. Kinoshita (1988) Carbon, Electrochemical and Physiochemical Properties Wiley Interscience New York

    Google Scholar 

  31. P. Chen M.A. Fryling R.L. McCreery (1995) Analy. Chem. 67 3115–3112 Occurrence Handle1:CAS:528:DyaK2MXnsVKqtrw%3D Occurrence Handle10.1021/ac00114a004

    Article  CAS  Google Scholar 

  32. H.H. Yang R.L. McCreery (2000) J. Electrochem. Soc. 147 3420 Occurrence Handle1:CAS:528:DC%2BD3cXmsVKrtrk%3D Occurrence Handle10.1149/1.1393915

    Article  CAS  Google Scholar 

  33. S. Trasobares O. Stephan C. Colliex W.K. Hsu H.W. Kroto D.R.M. Walton (2002) J. Chem. Phys. 116 8966–8972 Occurrence Handle1:CAS:528:DC%2BD38XjsFKms70%3D Occurrence Handle10.1063/1.1473195

    Article  CAS  Google Scholar 

  34. X.-L. Xie Y.-W. Mai X.-P. Zhou (2005) Mat. Sci. Eng., R: Reports R49 89–112 Occurrence Handle1:CAS:528:DC%2BD2MXmtFShs7Y%3D Occurrence Handle10.1016/j.mser.2005.04.002

    Article  CAS  Google Scholar 

  35. M. Audier M. Coulon (1985) Carbon 23 317–323 Occurrence Handle1:CAS:528:DyaL2MXkt1Oqt7s%3D Occurrence Handle10.1016/0008-6223(85)90117-4

    Article  CAS  Google Scholar 

  36. A.J.H.M. Kock P.K. Boxx Particlede E. Boellaard W. Klop J.W. Geus (1985) J. Catal 96 468–480 Occurrence Handle1:CAS:528:DyaL28XktVGgsg%3D%3D Occurrence Handle10.1016/0021-9517(85)90315-X

    Article  CAS  Google Scholar 

  37. I. Alstrup (1988) J. Catal 109 241–251 Occurrence Handle1:CAS:528:DyaL1cXhsFOjtbw%3D Occurrence Handle10.1016/0021-9517(88)90207-2

    Article  CAS  Google Scholar 

  38. A.J. Bard L.R. Faulkner (2001) Electrochemical Methods: Fundamentals and Applications John Wiley and Sons Ltd NY

    Google Scholar 

  39. K.K. Cline M.T. McDermott R.L. McCreery (1994) J. Phys. Chem 98 5314–5319 Occurrence Handle1:CAS:528:DyaK2cXivVaqtrg%3D Occurrence Handle10.1021/j100071a023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umit S. Ozkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matter, P.H., Ozkan, U.S. Non-metal Catalysts for Dioxygen Reduction in an Acidic Electrolyte. Catal Lett 109, 115–123 (2006). https://doi.org/10.1007/s10562-006-0067-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-006-0067-1

Keywords

Navigation