Skip to main content
Log in

Natural Convection in a Nanofluid Saturated Rotating Porous Layer: A Nonlinear Study

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The present paper deals with linear and nonlinear analysis of thermal instability in a rotating porous layer saturated by a nanofluid. Momentum equation with Brinkman term, involving the Coriolis term and incorporating the effect of Brownian motion along with thermophoresis has been considered. Linear stability analysis is done using normal mode technique, while for nonlinear analysis, a minimal representation of the truncated Fourier series, involving only two terms, has been used. Stationary and oscillatory modes of convection have been studied. A weak nonlinear analysis is used to obtain the concentration and thermal Nusselt numbers. The behavior of the concentration and thermal Nusselt numbers is investigated by solving the finite amplitude equations using a numerical method. Obtained results have been presented graphically and discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D B :

Brownian diffusion coefficient

D T :

Thermophoretic diffusion coefficient

Da :

Darcy number

Pr :

Pradtl number

d :

Dimensional layer depth

k T :

Effective thermal conductivity of porous medium

k m :

Thermal diffusivity of porous medium

Le :

Lewis number

N A :

Modified diffusivity ratio

N B :

Modified particle-density increment

p :

Pressure

g :

Gravitational acceleration

Ra :

Thermal Rayleigh–Darcy number

Rm :

Basic density Rayleigh number

Rn :

Concentration Rayleigh number

t :

Time

T :

Temperature

T c :

Temperature at the upper wall

T h :

Temperature t the lower wall

v :

Nanofluid velocity

v D :

Darcy velocity \({\varepsilon {\bf v}}\)

(x*, y*, z*):

Cartesian coordinates

Ta :

Taylor number

α :

Horizontal wave number

β :

Proportionality factor

\({\varepsilon }\) :

Porosity

μ :

Viscosity of the fluid

\({\bar\mu}\) :

Effective viscosity of the porous medium

ρ f :

Fluid density

ρ p :

Nanoparticle mass density

(ρ c)f :

Heat capacity of the fluid

(ρ c)m :

Effective heat capacity of the porous medium

(ρ c) p :

Effective heat capacity of the nanoparticle material

γ :

Parameter defined as \({\frac{(\rho c)_{\rm m}}{(\rho c)_{\rm f}}}\)

\({\phi}\) :

Nanoparticle volume fraction

ν :

Kinematic viscosity μ/ρ f

ψ :

Stream function

α :

Wave number

ω :

Frequency of oscillation

b :

Basic solution

*:

Dimensional variable

′:

Perturbation variable

\({\nabla^2}\) :

\({\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}}\)

\({\nabla_1^2}\) :

\({\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2}}\)

References

  • Agarwal, S., Bhadauria, B.S.: Thermal instability of a nanofluid saturating a rotating anisotropic porous medium. STRPM (accepted 2010)

  • Bhadauria B.S.: Double diffusive convection in a porous medium with modulated temperature on the boundaries. Transp. Porous Med. 70, 191–211 (2007a)

    Article  Google Scholar 

  • Bhadauria B.S.: Double diffusive convection in a rotating porous layer with modulated temperature on the boundaries. J. Porous Med. 10(6), 569–584 (2007b)

    Google Scholar 

  • Bhadauria B.S.: Fluid convection in a rotating porous layer under modulated temperature on the boundaries. Transp. Porous Med. 67(2), 297–315 (2007c)

    Article  Google Scholar 

  • Bhadauria B.S.: Effect of temperature modulation on Darcy convection in a rotating porous medium. J. Porous Med. 11(4), 361–375 (2008)

    Article  Google Scholar 

  • Bhadauria B.S., Suthar O.P.: Effect of thermal modulation on the onset of centrifugally driven convection in a rotating vertical porous layer placed far away from the axis of rotation. J. Porous Med. 12(3), 239–252 (2008)

    Google Scholar 

  • Buongiorno J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  • Buongiorno, J., Hu, W.: Nanofluid coolant for advanced nuclear power plants; Paper No. 5705, Proceedings of ICAPP’ 05, Seoul (2005)

  • Chakrabarti A., Gupta A.S.: Nonlinear thermo-haline convection in a rotating porous medium. Mech. Res. Commun. 8, 9–22 (1981)

    Article  Google Scholar 

  • Chandrasekhar S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, London (1961)

    Google Scholar 

  • Chen G.: Ballistic-diffusive heat-conduction equations. Phys. Rev. Lett. 86, 2297–2300 (2001)

    Article  Google Scholar 

  • Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A., Wang, H.P. (eds.) Development and Applications of Non-Newtonian Flows. ASME FED, 231/MD 66, pp. 99–105 (1995)

  • Das S.K., Putra N., Thiesen P., Roetzel W.: Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J. Heat Transf. 125, 567–574 (2003)

    Article  Google Scholar 

  • Desaive Th., Hennenberg M., Lebon G.: Thermal instability of a rotating saturated porous medium heated from below and submitted to rotation. Eur. Phys. J. B 29, 641–647 (2002)

    Article  Google Scholar 

  • Eastman J.A., Choi S.U.S., Yu W., Thompson L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    Article  Google Scholar 

  • Eastman J.A., Choi S.U.S., Yu W., Thompson L.J.: Thermal transport in nanofluids. Annu. Rev. Mater. Res. 34, 219–246 (2004)

    Article  Google Scholar 

  • Govender S.: Effect of anisotropy on stability of convection in a rotating porous layer distant from the center of rotation. J. Porous Med. 9(7), 651–662 (2006)

    Article  Google Scholar 

  • Govender S.: Linear stability of solutal convection in a rotating solidifying mushy layers: permeable mush-melt interface. J. Porous Med. 11(7), 683–690 (2008)

    Article  Google Scholar 

  • Horton W., Rogers F.T.: Convection currents in a porous medium. J. Appl. Phys. 16, 367–370 (1945)

    Article  Google Scholar 

  • Jang S.P., Choi S.U.S.: Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids. Appl. Phys. Lett. 84, 4316–4318 (2004)

    Article  Google Scholar 

  • Keblinski P., Cahill D.G.: Comments on model for heat conduction in nanofluids. Phy. Rev. Lett. 95, 209401 (2005)

    Article  Google Scholar 

  • Kim J., Kang Y.T., Choi C.K.: Analysis of convective instability and heat transfer characteristics of nanofluids. Phys. Fluids 16, 2395–2401 (2004)

    Article  Google Scholar 

  • Kim J., Choi C.K., Kang Y.T., Kim M.G.: Effects of thermodiffusion and nanoparticles on convective instabilities in binary nanofluids. Nanoscale Microscale Thermophys. Eng. 10, 29–39 (2006)

    Article  Google Scholar 

  • Kim J., Kang Y.T., Choi C.K.: Analysis of convective instability and heat transfer characteristics of nanofluids. Int. J. Refrig. 30, 323–328 (2007)

    Article  Google Scholar 

  • Kleinstreuer C., Li J., Koo J.: Microfluidics of nano-drug delivery. Int. J. Heat Mass Transf. 51, 5590–5597 (2008)

    Article  Google Scholar 

  • Kumar S., Murthy J.Y.: A numerical technique for computing effective thermal conductivity of fluid-particle mixtures (Part B). Num. Heat Transf. 47, 555–572 (2005)

    Article  Google Scholar 

  • Kuznetsov A.V., Avramenko A.A.: Effect of small particles on the stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite length. Int. Commun. Heat Mass Transf. 31, 1–10 (2004)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: Effect of local thermal non-equilibrium on the onset of convection in porous medium layer saturated by a nanofluid. Transp. Porous Med. 83, 425–436 (2010a)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman Model. Transp. Porous Med. 81, 409–422 (2010b)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: The onset of double-diffusive nanofluid convection in a layer of a saturated porous medium. Transp. Porous Med. 85, 941–951 (2010c)

    Article  Google Scholar 

  • Lapwood E.R.: Convection of a fluid in a porous medium. Proc. Camb. Phil. Soc. 44, 508–521 (1948)

    Article  Google Scholar 

  • Maharaj Y., Saneshan G.: Effect of Darcy-Prandtl number on the linear stability of stationary convection in rotating mushy layers. J. Porous Med. 8(3), 271–280 (2005)

    Article  Google Scholar 

  • Malashetty M.S.: Anisotropic thermo convective effects on the onset of double diffusive convection in a porous medium. Int. J. Heat Mass Transf. 36, 2397–2401 (1993)

    Article  Google Scholar 

  • Masuda H., Ebata A., Teramae K., Hishinuma N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles. Netsu Bussei 7, 227–233 (1993)

    Google Scholar 

  • Murray B.T., Chen C.F.: Double diffusive convection in a porous medium. J. Fluid Mech. 201, 147–166 (1989)

    Article  Google Scholar 

  • Nield D.A.: Onset of thermohaline convection in a porous medium. Water Resour. Res. 4, 553–560 (1968)

    Article  Google Scholar 

  • Nield D.A., Bejan A.: Convection in Porous Media. 3rd edn. Springer, New York (2006)

    Google Scholar 

  • Nield D.A., Kuznetsov A.V.: Thermal instability in a porous medium layer saturated by nonofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: The effect of local thermal non equilibrium on the onset of convection in a Nanofluid. J. Heat Transf. 132, (052405)1–7 (2010)

    Google Scholar 

  • Patil P.R., Vaidyanathan G.: On setting up of convective currents in a rotating porous medium under the influence of variable viscosity. Int. J. Eng. Sci. 21, 123–130 (1983)

    Article  Google Scholar 

  • Patil P.R., Parvathy C.P., Venkatakrishnan K.S.: Effect of rotation on the stability of a doubly diffusive fluid layer in a porous medium. Int. J. Heat Mass Transf. 33(6), 1073–1080 (1990)

    Article  Google Scholar 

  • Pearlstein A.J.: Effect of rotation on the stability of a doubly diffusive fluid layer. J. Fluid Mech. 103, 389–412 (1981)

    Article  Google Scholar 

  • Qin Y., Kaloni P.N.: Nonlinear stability problem of a rotating porous layer. Q. Appl. Math. 53, 129–142 (1995)

    Google Scholar 

  • Riahi D.: Flow instabilities in a horizontal dendrite layer rotating about an inclined axis. J. Porous Med. 8(3), 327–342 (2005)

    Article  Google Scholar 

  • Rudraiah N., Malashetty M.S.: The influence of coupled molecular diffusion on the double diffusive convection in a porous medium. ASME J. Heat Transf. 108, 872–876 (1986)

    Article  Google Scholar 

  • Tzou, D.Y.: Instability of nanofluids in natural convection. ASME. J. Heat Transf. 130, 072401(1–9) (2008a)

  • Tzou D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51, 2967–2979 (2008b)

    Article  Google Scholar 

  • Vadasz P.: Free Convection in Rotating Porous Media, Transport Phenomena in Porous Media, pp. 285–312. Elsevier, Amsterdam (1998)

    Google Scholar 

  • Vadasz P.: Heat conduction in nanofluid suspensions. ASME J. Heat Transf. 128, 465–477 (2006)

    Article  Google Scholar 

  • Vafai K.: Handbook of Porous Media. Taylor and Francis, London (2005)

    Book  Google Scholar 

  • Vanishree R.K., Siddheshwar P.G.: Effect of rotation on thermal convection in an anisotropic porous medium with temperature-dependent viscosity. Transp. Porous Med. 81, 73–87 (2010)

    Article  Google Scholar 

  • Yu W., Choi S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nanoparticle Res. 5, 167–171 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Bhadauria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhadauria, B.S., Agarwal, S. Natural Convection in a Nanofluid Saturated Rotating Porous Layer: A Nonlinear Study. Transp Porous Med 87, 585–602 (2011). https://doi.org/10.1007/s11242-010-9702-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-010-9702-9

Keywords

Navigation