Skip to main content
Log in

Fluid convection in a rotating porous layer under modulated temperature on the boundaries

  • Original Paper
  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The linear stability of thermal convection in a rotating horizontal layer of fluid-saturated porous medium, confined between two rigid boundaries, is studied for temperature modulation, using Brinkman’s model. In addition to a steady temperature difference between the walls of the porous layer, a time-dependent periodic perturbation is applied to the wall temperatures. Only infinitesimal disturbances are considered. The combined effect of rotation, permeability and modulation of walls’ temperature on the stability of flow through porous medium has been investigated using Galerkin method and Floquet theory. The critical Rayleigh number is calculated as function of amplitude and frequency of modulation, Taylor number, porous parameter and Prandtl number. It is found that both, rotation and permeability are having stabilizing influence on the onset of thermal instability. Further it is also found that it is possible to advance or delay the onset of convection by proper tuning of the frequency of modulation of the walls’ temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Horizontal wave number \(\left({a_x^2 +a_y^2}\right)^{1/2}\)

a c :

Critical wave number

d :

Depth of the porous layer

g :

Gravitational acceleration

k :

Permeability of the porous medium

κf :

Thermal conductivity of the fluid

κs :

Thermal conductivity of the solid

κ m :

δκf + (1 − δ)κs, effective thermal conductivity of porous media

p :

Pressure

P l :

Porous parameter, k/d 2

P r :

Prandtl number, ν /κ

R :

Thermal Rayleigh number, \(\frac{\alpha g\Delta Td^3}{\nu \kappa}\)

Ω:

Angular velocity vector (0, 0, Ω)

T :

Taylor number 4Ω2 d 42

R c :

Critical Rayleigh number

T :

Temperature

θ:

Perturbed temperature

ΔT :

Temperature difference between the walls

V :

Mean filter velocity, (u, v, w)

x, y, z :

Space coordinates

c p )f :

Heat capacity of the fluid

c p )s :

Heat capacity of the solid

c p ) m :

δ(ρ c p )f + (1 − δ)(ρ c p )s relative heat capacity of the porous medium

T S (z):

Steady temperature field

To(z, t):

Oscillating temperature field

Greek symbols :

 

ζ:

Z-component of vorticity

α:

Coefficient of thermal expansion

\(\varepsilon\) :

Amplitude of modulation

δ:

Porosity

γ:

Heat capacity ratio, (ρ c p ) m /(ρ c p )f

κ:

Effective thermal diffusivity, κ m /(ρ c p )f

μ:

Coefficient of viscosity

ν:

Kinematic viscosity, μ/ρ R

ρ:

Density

ω:

Modulation frequency

\(\phi\) :

Phase angle

Other symbols :

 

\(\nabla_1^2\) :

\(\frac{\partial^2}{\partial x^2}+ \frac{\partial^2}{\partial y^2}\)

\({\nabla}^{2}\) :

\(\nabla_1^2 +\frac{\partial^2}{\partial z^2}\)

D:

\(\frac{\partial} {\partial z}\)

References

  • Bhadauria B.S., Bhatia P.K. (2002). Time-periodic heating of Rayleigh-Benard convection. Physica Scripta 66(1):59–65

    Article  Google Scholar 

  • Bhadauria B.S. (2005). Time-periodic heating of a rotating horizontal fluid layer in a vertical magnetic field. Z. Naturforsch 60a:583–592

    Google Scholar 

  • Bhadauria B.S. (2006a). Time-periodic heating of Rayleigh-Benard convection in a vertical magnetic field. Physica Scripta 73(3):296–302

    Article  Google Scholar 

  • Bhadauria, B.S.: Thermal modulation of Rayleigh-Benard convection in a sparsely packed porous Medium. J. Porous Media (In press) (2006b)

  • Caltagirone J.P. (1976). Stabilite d’une couche poreuse horizontale soumise a des conditions aux limites periodiques. Int. J. Heat Mass Transfer 18:815–820

    Article  Google Scholar 

  • Cesari L. (1963). Asymptotic Behavior and Stability problems. Springer Verlag, Berlin

    Google Scholar 

  • Chakrabarti A., Gupta A.S. (1981). Nonlinear thermohaline convection in a rotating porous medium. Mech. Res. Commun. 8:9

    Article  Google Scholar 

  • Chandrasekhar S. (1961). Hydrodynamic and Hydromagnetic Stability. Oxford University Press, London

    Google Scholar 

  • Chhuon B., Caltagirone J.P. (1979). Stability of a horizontal porous layer with timewise periodic boundary conditions. ASME J. Heat Transfer 101:244–248

    Google Scholar 

  • Desaive Th., Hennenberg M., Lebon G. (2002). Thermal instability of a rotating saturated porous medium heated from below and submitted to rotation. Eur. Phys. J. B. 29:641–647

    Article  Google Scholar 

  • Gershuni G.Z., Zhukhovitskii E.M. (1963). On parametric excitation of convective instability. J. Appl. Math. Mech. 27:1197–1204

    Article  Google Scholar 

  • Jain M.K., Iyengar S.R.K., Jain R.K. (1991). Numerical Methods for Scientific and Engineering Computation. Wiley Eastern Limited, New Delhi

    Google Scholar 

  • Malashetty M.S., Basavaraja D. (2002). Rayleigh-Benard convection subject to time dependent wall temperature/gravity in a fluid saturated anisotropic porous medium. Heat Mass Transfer 38:551–563

    Article  Google Scholar 

  • Malashetty M.S., Basavaraja D. (2003). The effect of thermal/gravity modulation on the onset of convection in a horizontal anisotropic porous layer. Int. J. Appl. Mech. Eng. 8(3):425–439

    Google Scholar 

  • Malashetty M.S., Wadi V.S. (1999). Rayleigh-Benard convection subject to time dependent wall temperature in a fluid saturated porous layer. Fluid Dyn. Res. 24:293–308

    Article  Google Scholar 

  • Nield D.A., Bejan A. (1999). Convection in Porous Media. Springer-Verlag, New York

    Google Scholar 

  • Patil P.R., Vaidyanathan G. (1983). On setting up of convective currents in a rotating porous medium under the influence of variable viscosity. Int. J. Eng. Sci. 21:123–130

    Article  Google Scholar 

  • Prabhamani, R. Patil, Parvathy, C.P., Venkatakrishnan, K.S. (1990). Effect of rotation on the stability of a doubly diffusive fluid layer in a porous medium. Int. J Heat Mass Transfer 33(6), 1073–1080

  • Pearlstein A.J. (1981). Effect of rotation on the stability of a doubly diffusive fluid layer. J. Fluid Mech. 103:389–412

    Article  Google Scholar 

  • Qin Y., Kaloni P.N. (1995). Nonlinear stability problem of a rotating porous layer. Quart. Appl. Math. 53:129–142

    Google Scholar 

  • Roppo M.N., Davis S.H., Rosenblat S. (1984). Benard convection with time-periodic heating. Phys. Fluids 27(4):796–803

    Article  Google Scholar 

  • Rosenblat S., Herbert D.M. (1970). Low frequency modulation of thermal instability. J. Fluid Mech. 43:385–398

    Article  Google Scholar 

  • Rosenblat S., Tanaka G.A. (1971). Modulation of thermal convection instability. Phys. Fluids 14(7):1319–1322

    Article  Google Scholar 

  • Rudraiah N., Malashetty M.S. (1988). Effect of modulation on the onset of convection in a porous Media. Vignana Bharathi 11(1):19–44

    Google Scholar 

  • Rudraiah N., Malashetty M.S. (1990). Effect of modulation on the onset of convection in a sparsely packed porous layer. ASME J. Heat Transfer 112:685–689

    Article  Google Scholar 

  • Rudraiah N., Shivakumara I.S., Friedrich R. (1986). The effect of rotation on linear and non-linear double-diffusive convection in a sparsely packed porous medium. Int. J. Heat Mass Transfer 29:1301–1316

    Article  Google Scholar 

  • Sastry S.S. (1993). Introductory Methods of Numerical Analysis. Prentice-Hall of India Private Limited, New Delhi

    Google Scholar 

  • Vadasz P. (1992). Natural convection in a porous media induced by the centrifugal body force: The solution for small aspect ratio. ASME J. Energy Res. Tech. 114:250–254

    Google Scholar 

  • Vadasz P. (1994). Centrifugally generated free convection in a rotating porous box. Int. J. Heat Mass Transfer 37:2399–2404

    Article  Google Scholar 

  • Vadasz, P.: Flow in rotating porous media. Fluid Transport Porous Media, Chapter 4. Computational Mechanics Publications, Southhampton (1997).

  • Vadasz P. (1998). Free convection in rotating porous media. Transport Phenomena in Porous Media, pp. 285–312. Elsevier, Amsterdam

    Google Scholar 

  • Venezian G. (1969). Effect of modulation on the onset of thermal convection. J. Fluid Mech. 35(2):243–254

    Article  Google Scholar 

  • Yih C.S., Li C.H. (1972). Instability of unsteady flows or configurations. Part 2. Convective Instability. J. Fluid Mech. 54(1):143–152

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Bhadauria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhadauria, B.S. Fluid convection in a rotating porous layer under modulated temperature on the boundaries. Transp Porous Med 67, 297–315 (2007). https://doi.org/10.1007/s11242-006-9027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-006-9027-x

Keywords

Navigation