Skip to main content
Log in

Double diffusive convection in a porous medium with modulated temperature on the boundaries

  • Original Paper
  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The effect of temperature modulation on the onset of double diffusive convection in a sparsely packed porous medium is studied by making linear stability analysis, and using Brinkman-Forchheimer extended Darcy model. The temperature field between the walls of the porous layer consists of a steady part and a time dependent periodic part that oscillates with time. Only infinitesimal disturbances are considered. The effect of permeability and thermal modulation on the onset of double diffusive convection has been studied using Galerkin method and Floquet theory. The critical Rayleigh number is calculated as a function of frequency and amplitude of modulation, Vadasz number, Darcy number, diffusivity ratio, and solute Rayleigh number. Stabilizing and destabilizing effects of modulation on the onset of double diffusive convection have been obtained. The effects of other parameters are also discussed on the stability of the system. Some results as the particular cases of the present study have also been obtained. Also the results corresponding to the Brinkman model and Darcy model have been compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Horizontal wave number \(\left( {a_x^2 +a_y^2 } \right)^{1/2}\)

a c :

Critical wave number

d :

Depth of the porous layer

g :

Gravitational acceleration

k :

Permeability of the porous medium

V :

Mean filter velocity, (u, v, w)

p :

Pressure

S :

Solute concentration

T :

Temperature

θ:

Perturbed temperature

ΔS :

Salinity difference between the walls

ΔT :

Temperature difference between the walls

D a :

Darcy number, k/d 2

P r :

Prandtl number, ν /κ T

R a :

Darcy Rayleigh number, \(\frac{\alpha g \Delta T k d}{\nu \kappa _T }\)

\(R_a^O \) :

Oscillatory Rayleigh number

R ac :

Critical Rayleigh number

R S :

Solute Rayleigh number, \(\frac{\beta \,g\,\Delta S\,k\,d}{\nu \kappa _S }\)

\(R_S^\ast \) :

Crossover solute Rayleigh number

x, y, z :

Space coordinates

Other symbols :

 

\(\nabla _1^2 \) :

\(\frac{\partial ^2}{\partial x^2}+\frac{\partial ^2}{\partial y^2}\)

2 :

\(\nabla _1^2 +\frac{\partial ^2}{\partial z^2}\)

D :

\(\frac{\partial }{\partial z}\)

Greek symbols :

 

α:

Coefficient of thermal expansion

β:

Coefficient of solute expansion

\(\varepsilon\) :

Amplitude of modulation

γ:

Heat capacity ratio (ρ c p ) m /(ρ c p ) f

δ:

Porosity

K f :

Thermal conductivity of the fluid

K SO :

Thermal conductivity of the solid

K m :

Effective thermal conductivity of Porous media, δK f + (1−δ )K SO

κ T :

Effective thermal diffusivity, K m /(ρ c p ) f

κ S :

Solute diffusivity

μ:

coefficient of viscosity

ν:

Kinematic viscosity μ /ρR

ρ:

Density

ω:

Modulation frequency

\(\phi \) :

Phase angle

σ:

Growth rate (a complex number)

τ:

Diffusivity ratio, κ S T

Subscripts :

 

b :

Basic state

c :

Critical

f :

Fluid

R :

Reference value

Superscript :

 

/:

Perturbed state

References

  • Bhadauria B.S. and Bhatia P.K. (2002). Time-periodic heating of Rayleigh-Benard convection. Physica Scripta 66(1): 59–65

    Article  Google Scholar 

  • Bhadauria B.S. (2005). Time-periodic heating of a rotating horizontal fluid layer in a vertical magnetic field. Z. Naturforsch. 60a: 583–592

    Google Scholar 

  • Bhadauria B.S. (2006a). Time-periodic heating of Rayleigh-Benard convection in a vertical magnetic field. Physica Scripta 73(3): 296–302

    Article  Google Scholar 

  • Bhadauria, B.S.: Fluid convection in a rotating porous layer under modulated temperature on the boundaries. Trans. Porous Media (in press) (2006b)

  • Bhadauria, B.S.: Thermal modulation of Rayleigh-Benard convection in a sparsely packed porous Medium. J. Porous Media (in press) (2007a)

  • Bhadauria, B.S.: Magnetofluidconvection in a rotating porous layer under modulated temperature on the boundaries. ASME J. Heat Transfer (in press) (2007b)

  • Caltagirone J.P. (1976). Stabilite d’une couche poreuse horizontale soumise a des conditions aux limites periodiques. Int. J. Heat Mass Transfer 18: 815–820

    Article  Google Scholar 

  • Cesari L. (1963). Asymptotic Behavior and Stability Problems. Springer Verlag, Berlin

    Google Scholar 

  • Chandrasekhar S. (1961). Hydrodynamic and Hydromagnetic Stability. Oxford University Press, London

    Google Scholar 

  • Chhuon B. and Caltagirone J.P. (1979). Stability of a horizontal porous layer with timewise periodic boundary conditions. ASME J. Heat Transfer 101: 244–248

    Google Scholar 

  • Desaive T.h., Hennenberg M. and Lebon G. (2002). Thermal instability of a rotating saturated porous medium heated from below and submitted to rotation. Eur. Phys. J. B. 29: 641–647

    Article  Google Scholar 

  • Griffith R.W. (1981). Layered double-diffusive convection in porous media. J. Fluid Mech. 102: 221–248

    Article  Google Scholar 

  • Horton C.W. and Rogers F.T. (1945). Convection currents in a porous medium. J. Appl. Phys. 16: 367–370

    Article  Google Scholar 

  • Jain M.K., Iyengar S.R.K. and Jain R.K. (1991). Numerical Methods for Scientific and Engineering Computation. Wiley Eastern Limited, New Delhi

    Google Scholar 

  • Lapwood E.R. (1948). Convection of a fluid in a porous medium. Proc. Camb. Phil. Soc. 44: 508–521

    Google Scholar 

  • Malashetty M.S. and Basavaraja D. (2002). Rayleigh–Benard convection subject to time dependent wall temperature/gravity in a fluid saturated anisotropic porous medium. Heat. Mass. Transfer 38: 551–563

    Article  Google Scholar 

  • Malashetty M.S. and Basavaraja D. (2003). The effect of thermal/gravity modulation on the onset of convection in a horizontal anisotropic porous layer. Int. J. Appl. Mech. Eng. 8(3): 425–439

    Google Scholar 

  • Malashetty M.S. and Basavaraja D. (2004). Effect of time-periodic boundary temperatures on the onset of double diffusive convection in a horizontal anisotropic porous layer. Int. J. Heat Mass Transfer 47: 2317–2327

    Article  Google Scholar 

  • Malashetty M.S. and Wadi V.S. (1999). Rayleigh–Benard convection subject to time dependent wall temperature in a fluid saturated porous layer. Fluid Dyn. Res. 24: 293–308

    Article  Google Scholar 

  • Murray B.T. and Chen C.F. (1989). Double-diffusive convection in a porous medium. J. Fluid Mech. 201: 147–166

    Article  Google Scholar 

  • Nield D.A. and Bejan A. (2006). Convection in Porous Media. Springer-Verlag, New York

    Google Scholar 

  • Nield D.A. (1968). Onset of thermohaline convection in a porous medium. Water Resour. Res. 4(3): 553–560

    Google Scholar 

  • Patil P.R. and Rudraiah N. (1980). Linear convective stability and thermal diffusion of a horizontal quiescent layer of a two component fluid in a porous medium. Int. J. Engg. Sci. 18: 1055–1059

    Article  Google Scholar 

  • Patil P.R and Vaidyanathan G. (1982). Effect of variable viscosity on thermohaline convection in a porous medium. J. Hydrol. 57: 147–161

    Article  Google Scholar 

  • Poulikakos D. (1986). Double-diffusive convection in a horizontally sparsely packed porous layer. Int. Commun. Heat Mass Transfer 13: 587–598

    Article  Google Scholar 

  • Roppo M.N., Davis S.H. and Rosenblat S. (1984). Benard convection with time-periodic heating. Phys. Fluids 27(4): 796–803

    Article  Google Scholar 

  • Rosenblat S. and Herbert D.M. (1970). Low frequency modulation of thermal instability. J. Fluid Mech. 43: 385–398

    Article  Google Scholar 

  • Rosenblat S., Tanaka and G.A. (1971). Modulation of thermal convection instability. Phys. Fluids 14(7): 1319–1322

    Article  Google Scholar 

  • Rudraiah N. and Malashetty M.S. (1986). The influence of coupled molecular diffusion on double diffusive convection in a porous medium. ASME J. Heat Transfer 108: 872–876

    Article  Google Scholar 

  • Rudraiah N. and Malashetty M.S. (1988). Effect of modulation on the onset of convection in a porous Media. Vignana Bharathi 11(1): 19–44

    Google Scholar 

  • Rudraiah N. and Malashetty M.S. (1990). Effect of modulation on the onset of convection in a sparsely packed porous layer. ASME J. Heat Transfer 112: 685–689

    Article  Google Scholar 

  • Rudraiah N., Srimani P.K. and Friedrich R. (1982). Finite amplitude convection in a two-component fluid saturated porous layer. Heat Mass Transfer 25: 715–722

    Article  Google Scholar 

  • Sastry S.S. (1993). Introductory Methods of Numerical Analysis. Prentice-Hall of India Private Limited, New Delhi

    Google Scholar 

  • Straughan B. (2001). A sharp nonlinear stability threshold in rotating porous convection. Proc. Roy. Soc. Lond. A 457: 87–93

    Article  Google Scholar 

  • Taunton J.W. and Lightfoot E.N. (1971). Thermal instability and salt fingers in a porous medium. Phys. Fluids 15(5): 748–753

    Article  Google Scholar 

  • Vadasz P. (1998). Coriolis effect on gravity-driven convection in a rotating porous layer heated from below. J. Fluid Mech. 376: 351–375

    Article  Google Scholar 

  • Venezian G. (1969). Effect of modulation on the onset of thermal convection. J. Fluid Mech. 35(2): 243–254

    Article  Google Scholar 

  • Walker K. and Homsy G.H. (1977). A note on convective instability of Boussinesq fluids in a porous media. ASME J. Heat Transfer 99(2): 338–339

    Google Scholar 

  • Yih C.S. and Li C.H. (1972). Instability of unsteady flows or configurations. Part 2. Convective Instability. J. Fluid Mech. 54(1): 143–152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Bhadauria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhadauria, B.S. Double diffusive convection in a porous medium with modulated temperature on the boundaries. Transp Porous Med 70, 191–211 (2007). https://doi.org/10.1007/s11242-006-9095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-006-9095-y

Keywords

Navigation