Skip to main content
Log in

Modification of phytochemical production and antioxidant activity of Dracocephalum kotschyi cells by exposure to static magnetic field and magnetite nanoparticles

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Dracocephlum kotschyi Boiss is a genus in Lamiaceae family and a medicinal herb native to Iran. The cell suspension cultures were treated by static magnetic field (SMF) and Fe3O4 magnetite nanoparticles (MNP) to understand the production yield of secondary metabolites. The treatment procedure was done by cultivating the cells either with 100 ppm MNP, SMFs, or simultaneous exposure to both MNP and SMFs. The SMF at 30 mT was uniformly applied to the cells either for 3 or 4 days with a 3 h per day or a 5 h per day intervals, respectively. The contents of phenolics and phytochemicals were then examined by high performance liquid chromatography and UV–Vis spectrophotometer. These treatments imposed oxidative stress and induced polyphenol oxidase and phenylalanine ammonia lyase, accompanied by enhanced production of phenolics, anthocyanins, flavonoids, and lignin. The highest membrane embrittlement and elicitation was found upon simultaneous application of the MNPs and SMFs, followed by the MNP and SMFs. The contents of naringin, rosmarinic acid, quercetin, thymol, carvacrol, apigenin, and rutin increased in the intracellular biomass of all treated cells and extracellular culture media. These findings propose the potential of these elicitors in simultaneous production and secretion of these phytochemicals into culture media.

Key message

This research proposes the potential of static magnetic field and Fe3O4 magnetite nanoparticles elicitors in simultaneous production and secretion of Dracocephalum polychaetum phytochemicals into culture media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdolmaleki P, Ghanati F, Sahebjamei H, Sarvestani AS (2007) Peroxidase activity, lignification and promotion of cell death in tobacco cells exposed to static magnetic field. Environmentalist 27:435–440

    Article  Google Scholar 

  • Açıkgöz MA (2021) Effects of sorbitol on the production of phenolic compounds and terpenoids in the cell suspension cultures of Ocimum basilicum L. Biologia 76:395–409

    Article  CAS  Google Scholar 

  • Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2(4):875–877

    Article  CAS  PubMed  Google Scholar 

  • Akkol EK, Göger F, Koşar M, Başer KHC (2008) Phenolic composition and biological activities of Salvia halophila and Salvia virgata from Turkey. Food Chem 108:942–949

    Article  CAS  PubMed  Google Scholar 

  • Aladjadjiyan A (2010) Influence of stationary magnetic field on lentil seeds. Int Agrophys 24(3):321–324

    Google Scholar 

  • Araji S, Grammer TA, Gertzen R, Anderson SD, Mikulic-Petkovsek M, Veberic R, Phu ML, Solar A, Leslie CA, Dandekar AM (2014) Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiol 164:1191–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreca D, Laganà G, Leuzzi U, Smeriglio A, Trombetta D, Bellocco E (2016) Evaluation of the nutraceutical, antioxidant and cytoprotective properties of ripe pistachio (Pistacia vera L. variety Bronte) hulls. Food Chem 196:493–502

    Article  CAS  PubMed  Google Scholar 

  • Çelik Ö, Büyükuslu N, Atak Ç, Rzakoulieva A (2009) Effects of magnetic field on activity of superoxide dismutase and catalase in Glycine max L. Merr. roots. Polish J Environ Stud 18(2):175–182

    Google Scholar 

  • Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:15195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chua LS, Latiff NA, Lee SY, Lee CT, Sarmidi MR, Aziz RA (2011) Flavonoids and phenolic acids from Labisia pumila (Kacip Fatimah). Food Chem 127:1186–1192

    Article  CAS  PubMed  Google Scholar 

  • Chung I-M, Rekha K, Rajakumar G, Thiruvengadam M (2018) Production of bioactive compounds and gene expression alterations in hairy root cultures of chinese cabbage elicited by copper oxide nanoparticles. Plant Cell. Tissue Organ Culture (PCTOC) 134:95–106

    Article  CAS  Google Scholar 

  • Coşkun Ş, Balabanlı B, Canseven A, Seyhan N (2009) Effects of continuous and intermittent magnetic fields on oxidative parameters in vivo. Neurochem Res 34(2):238–243

    Article  PubMed  CAS  Google Scholar 

  • Dhawi F, Al-Khayri JM, Hassan E (2009) Static magnetic field influence on elements composition in date palm (Phoenix dactylifera L.). Res J Agric Biol Sci 5:161–166

    CAS  Google Scholar 

  • Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3:e1

    Article  CAS  Google Scholar 

  • Di Ferdinando M, Brunetti C, Fini A, Tattini M (2012) Flavonoids as antioxidants in plants under abiotic stresses. Abiot Stress Responses Plants 159–179

  • Dias MI, Sousa MJ, Alves RC, Ferreira IC (2016) Exploring plant tissue culture to improve the production of phenolic compounds: a review. Indus Crops Products 82:9–22

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopartic Res 14:1125

    Article  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7(7):1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J, Ma X, Wei Q, Peng S, Zhang S (2011) Effects of growing location on the contents of secondary metabolites in the leaves of four selected superior clones of Eucommia ulmoides. Indus Crops Products 34:1607–1614

    Article  CAS  Google Scholar 

  • Falcone Ferreyra ML, Rius S, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fattahi M, Bonfill M, Fattahi B, Torras-Claveria L, Sefidkon F, Cusido RM, Palazon J (2016) Secondary metabolites profiling of Dracocephalum kotschyi Boiss at three phenological stages using uni-and multivariate methods. J Appl Res Med Aromatic Plants 3:177–185

    Article  Google Scholar 

  • Galland P, Pazur A (2005) Magnetoreception in plants. J Plant Res 118:371–389

    Article  PubMed  Google Scholar 

  • Gamborg O, Murashige T, Thorpe T, Vasil I (1976) Plant tissue culture media. In Vitro 12(7):473–478

    Article  CAS  PubMed  Google Scholar 

  • Ghanati F, Morita A, Yokota H (2005) Effects of aluminum on the growth of tea plant and activation of antioxidant system. Plant Soil 276:133–141

    Article  CAS  Google Scholar 

  • Ghanati F, Abdolmaleki P, Vaezzadeh M, Rajabbeigi E, Yazdani M (2007) Application of magnetic field and iron in order to change medicinal products of Ocimum basilicum. Environmentalist 27:429–434

    Article  Google Scholar 

  • Golkar P, Taghizadeh M (2018) In vitro evaluation of phenolic and osmolite compounds, ionic content, and antioxidant activity in safflower (Carthamus tinctorius L.) under salinity stress. Plant Cell, Tissue, Organ Culture 134:357–368

    Article  CAS  Google Scholar 

  • Golkar P, Taghizadeh M, Noormohammadi A (2019) Effects of sodium alginate elicitation on secondary metabolites and antioxidant activity of safflower genotypes under in vitro salinity stress. Vitro Cell Dev Biol-Plant 55(5):527–538

    Article  CAS  Google Scholar 

  • Golkar P, Taghizadeh M, Jalali SAH (2019) Determination of phenolic compounds, antioxidant and anticancer activity of Chrozophora tinctoria accessions collected from different regions of Iran. J Food Biochem 43(11):e13036

    Article  PubMed  Google Scholar 

  • Haghighat N, Abdolmaleki P, Ghanati F, Behmanesh M, Payez A (2014) Modification of catalase and MAPK in Vicia faba cultivated in soil with high natural radioactivity and treated with a static magnetic field. Journal of Plant Physiology 171:99–103

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Oki K, Hoshino K, Kuboi T (2003) Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus) hypocotyl. Plant Sci 164:259–265

    Article  CAS  Google Scholar 

  • Hassanpour H, Niknam V (2020) Establishment and assessment of cell suspension cultures of Matricaria chamomilla as a possible source of apigenin under static magnetic field. Plant Cell. Tissue Organ Culture (PCTOC) 142:583–593

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Heidarabadi MD, Ghanati F, Fujiwara T (2011) Interaction between boron and aluminum and their effects on phenolic metabolism of Linum usitatissimum L. roots. Plant Physiol Biochem 49:1377–1383

    Article  PubMed  CAS  Google Scholar 

  • Heydari P, Yavari M, Adibi P, Asghari G, Ghanadian S-M, Dida GO, Khamesipour F (2019) Medicinal properties and active constituents of Dracocephalum kotschyi and its significance in Iran: a systematic review. Evid Based Complement Altern Med 2019

  • Iiyama K, Wallis AF (1990) Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. J Sci Food Agric 51:145–161

    Article  CAS  Google Scholar 

  • Jalali M, Ghanati F, Modarres-Sanavi A, Khoshgoftarmanesh A (2017) Physiological effects of repeated foliar application of magnetite nanoparticles on maize plants. J Agronomy Crop Sci 203:593–602

    Article  CAS  Google Scholar 

  • Jalilzadeh E, Jamei R, Hosseini Sarghein S (2018) Magnetic field and silver nanoparticles induced changes on phenolic compound and oxidative status of marigold seedlings. J Plant Physiol Breed 8:75–88

    Google Scholar 

  • Jamshidi M, Ghanati F, Rezaei A, Bemani E (2016) Change of antioxidant enzymes activity of hazel (Corylus avellana L.) cells by AgNPs. Cytotechnology 68:525–530

    Article  CAS  PubMed  Google Scholar 

  • Kahn V (1975) Polyphenol oxidase activity and browning of three avocado varieties. J Sci Food Agri 26:1319–1324

    Article  CAS  Google Scholar 

  • Khatami F, Najafi F, Yari F, Khavari-Nejad RA (2020) Expression of etr1-1 gene in transgenic Rosa hybrida L increased postharvest longevity through reduced ethylene biosynthesis and perception. Sci Hortic 263:109103

    Article  CAS  Google Scholar 

  • Khvatkov P, Chernobrovkina M, Okuneva A, Shvedova A, Dolgov CIS (2015) Callus induction and regeneration in Wolffia arrhiza (L.) Horkel ex Wimm. Plant Cell, Tissue, Organ Culture 120:263–273

    Article  CAS  Google Scholar 

  • Latef AAHA, Dawood MF, Hassanpour H, Rezayian M, Younes NA (2020) Impact of the static magnetic field on growth, pigments, osmolytes, nitric oxide, hydrogen sulfide phenylalanine ammonia-lyase activity, antioxidant defense system, and yield in lettuce. Biology 9:172

    Article  CAS  PubMed Central  Google Scholar 

  • Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chang PR, Huang J, Wang Y, Yuan H, Ren H (2013) Physiological effects of magnetic iron oxide nanoparticles towards watermelon. J Nanosci Nanotechnol 13:5561–5567

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Maffei ME (2014) Magnetic field effects on plant growth, development, and evolution. Front Plant Sci 5:445

    Article  PubMed  PubMed Central  Google Scholar 

  • Majdi M, Malekzadeh-Mashhady A, Maroufi A, Crocoll C (2017) Tissue-specific gene-expression patterns of genes associated with thymol/carvacrol biosynthesis in thyme (Thymus vulgaris L.) and their differential changes upon treatment with abiotic elicitors. Plant Physiol Biochem 115:152–162

    Article  CAS  PubMed  Google Scholar 

  • Manquián-Cerda K, Escudey M, Zúñiga G, Arancibia-Miranda N, Molina M, Cruces E (2016) Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro. Ecotoxicol Environ Safety 133:316–326

    Article  PubMed  CAS  Google Scholar 

  • Maqsood S, Benjakul S, Abushelaibi A, Alam A (2014) Phenolic compounds and plant phenolic extracts as natural antioxidants in prevention of lipid oxidation in seafood: a detailed review. Compr Rev Food Sci Food Safety 13:1125–1140

    Article  CAS  Google Scholar 

  • Miliauskas G, Venskutonis P, Van Beek T (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 85:231–237

    Article  CAS  Google Scholar 

  • Mirzania F, Farimani MM (2018) Biochemical evaluation of antioxidant activity, phenol and flavonoid contents of Dracocephalum Kotschyi Boiss extracts obtained with different solvents. Health Biotechnol Biopharma 1:32–44

    Google Scholar 

  • Moghaddam G, Ebrahimi SA, Rahbar-Roshandel N, Foroumadi A (2012) Antiproliferative activity of flavonoids: influence of the sequential methoxylation state of the flavonoid structure. Phytother Res 26:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Morita A, Yokota H, Ishka MR, Ghanati F (2006) Changes in peroxidase activity and lignin content of cultured tea cells in response to excess manganese. Soil Sci Plant Nutr 52:26–31

    Article  CAS  Google Scholar 

  • Nagy P, Fischl G (2004) Effect of static magnetic field on growth and sporulation of some plant pathogenic fungi. Bioelectromagnetics 25:316–318

    Article  CAS  PubMed  Google Scholar 

  • Nourozi E, Hosseini B, Maleki R, Mandoulakani BA (2019) Pharmaceutical important phenolic compounds overproduction and gene expression analysis in Dracocephalum kotschyi hairy roots elicited by SiO2 nanoparticles. Indus Crops Products 133:435–446

    Article  CAS  Google Scholar 

  • Ochoa-Alejo N, Gómez-Peralta JE (1993) Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (Capsicum annuum L.). J Plant Physiol 141:147–152

    Article  CAS  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:1–15

    Article  CAS  Google Scholar 

  • Pandya SR, Singh M (2015) Dispersion and optical activities of newly synthesized magnetic nanoparticles with organic acids and dendrimers in DMSO studied with UV/vis spectrophotometry. J Mol Liquids 211:146–156

    Article  CAS  Google Scholar 

  • Payez A, Ghanati F, Behmanesh M, Abdolmaleki P, Hajnorouzi A, Rajabbeigi E (2013) Increase of seed germination, growth and membrane integrity of wheat seedlings by exposure to static and a 10-KHz electromagnetic field. Electromagn Biol Med 32:417–429

    Article  CAS  PubMed  Google Scholar 

  • Peñuelas J, Llusià J (1997) Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis. J Chem Ecol 23:979–993

    Article  Google Scholar 

  • Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hucherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S (2009) Evolution of rosmaric acid biosynthesis. Phytochemistry 70:1663–1679

    Article  CAS  PubMed  Google Scholar 

  • Poinapen D, Toppozini L, Dies H, Brown DC, Rheinstädter MC (2013) Static magnetic fields enhance lipid order in native plant plasma membrane. Soft Matter 9:6804–6813

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Kumari BDR (2012) Pulsed magnetic field: a contemporary approach offers to enhance plant growth and yield of soybean. Plant Physiol Biochem 51:139–144

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan R, Leelapriya T, Kumari BDR (2012) Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress. Bioelectromagnetics 33:670–681

    Article  CAS  PubMed  Google Scholar 

  • Rajabbeigi E, Ghanati F, Abdolmaleki P, Payez A (2013) Antioxidant capacity of parsley cells (Petroselinum crispum L.) in relation to iron-induced ferritin levels and static magnetic field. Electromagn Biol Med 32:430–441

    Article  CAS  PubMed  Google Scholar 

  • Rezaei A, Ghanati F, Behmanesh M (2010) Static magnetic field improved salicylic acid effect on taxol production in suspension-cultured hazel (Corylus avellana) cells. In: 6th international workshop on biological effects of electromagnetic fields, 2010. pp 70–71

  • Safari M, Ghanati F, Behmanesh M, Hajnorouzi A, Nahidian B, Mina G (2013) Enhancement of antioxidant enzymes activity and expression of CAT and PAL genes in hazel (Corylus avellana L.) cells in response to low-intensity ultrasound. Acta Physiol Plantarum 35:2847–2855

    Article  CAS  Google Scholar 

  • Sahebjamei H, Abdolmaleki P, Ghanati F (2007) Effects of magnetic field on the antioxidant enzyme activities of suspension-cultured tobacco cells. Bioelectromagnetics 28:42–47

    Article  CAS  PubMed  Google Scholar 

  • Salehi M, Hejazi SMH, Tabaei R (2015) Genetic differentiation of two Dracocephalum (Lamiaceae) species and populations in Iran by Polyacrylamide Gel Electrophoresis. Res Trend 300

  • Selim A-FH, El-Nady MF (2011) Physio-anatomical responses of drought stressed tomato plants to magnetic field. Acta Astronautica 69:387–396

    Article  CAS  Google Scholar 

  • Shang G-M, Wu J-C, Yuan Y-J (2004) Improved cell growth and Taxol production of suspension-cultured Taxus chinensis var. mairei in alternating and direct current magnetic fields. Biotechnol Lett 26:875–878

    Article  CAS  PubMed  Google Scholar 

  • Shirani Bidabadi S, Sharifi P (2021) Strigolactone and methyl jasmonate-induced antioxidant defense and the composition alterations of different active compounds in Dracocephalum kotschyi Boiss under drought stress. J Plant Growth Regul 40:878–889

    Article  CAS  Google Scholar 

  • Shokrollahi S, Ghanati F, Sajedi RH, Sharifi M (2018) Possible role of iron containing proteins in physiological responses of soybean to static magnetic field. J Plant Physiol 226:163–171

    Article  CAS  PubMed  Google Scholar 

  • Taghizadeh M, Nasibi F, Kalantari KM, Ghanati F (2019) Evaluation of secondary metabolites and antioxidant activity in Dracocephalum polychaetum Bornm. cell suspension culture under magnetite nanoparticles and static magnetic field elicitation. Plant Cell Tissue Org Cult (PCTOC) 136:489–498

  • Tahsili J, Sharifi M, Safaie N, Esmaeilzadeh-Bahabadi S, Behmanesh M (2014) Induction of lignans and phenolic compounds in cell culture of Linum album by culture filtrate of Fusarium graminearum. J Plant Interact 9:412–417

    Article  Google Scholar 

  • Tenforde T (1996) Interaction of ELF magnetic fields with living systems. In: Postow E (ed) Polk C. CRC Press, Biological effects of electromagnetic fields. Washington D.C., pp 185–230

    Google Scholar 

  • Trebbi G, Borghini F, Lazzarato L, Torrigiani P, Calzoni GL, Betti L (2007) Extremely low frequency weak magnetic fields enhance resistance of NN tobacco plants to tobacco mosaic virus and elicit stress-related biochemical activities. Bioelectromagnetics 28:214–223

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Zheng LP, Wu JY, Tan RX (2006) Involvement of nitric oxide in oxidative burst, phenylalanine ammonia-lyase activation and Taxol production induced by low-energy ultrasound in Taxus yunnanensis cell suspension cultures. Nitric Oxide 15:351–358

    Article  CAS  PubMed  Google Scholar 

  • Wang H-Y, Zeng X-B, Guo S-Y, Li Z-T (2008) Effects of magnetic field on the antioxidant defense system of recirculation-cultured Chlorella vulgaris. Bioelectromagnetics 29:39–46

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Guo J, Yuan J (2008) vitro antioxidant properties of rutin LWT-Food. Sci Technol 41(6):1060–1066

    CAS  Google Scholar 

  • Yue W, Ming Q-L, Lin B, Rahman K, Zheng C-J, Han T, Qin L-P (2016) Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Critic Rev Biotechnol 36:215–232

    Article  CAS  Google Scholar 

  • Zahir A, Nadeem M, Ahmad W, Giglioli-Guivarc’h N, Hano C, Abbasi BH (2019) Chemogenic silver nanoparticles enhance lignans and neolignans in cell suspension cultures of Linum usitatissimum L. Plant Cell. Tissue Organ Culture (PCTOC) 136:589–596

    Article  CAS  Google Scholar 

  • Zia-ur-Rehman M, Naeem A, Khalid H, Rizwan M, Ali S, Azhar M (2018) Responses of plants to iron oxide nanoparticles. Nanomater Plants, Algae, Microorgan 1:221–238

    CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzieh Taghizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by K X Tang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghizadeh, M., Nasibi, F., Manouchehri Kalantari, K. et al. Modification of phytochemical production and antioxidant activity of Dracocephalum kotschyi cells by exposure to static magnetic field and magnetite nanoparticles. Plant Cell Tiss Organ Cult 147, 365–377 (2021). https://doi.org/10.1007/s11240-021-02129-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-021-02129-9

Keywords

Navigation