Skip to main content
Log in

Magnetoreception in plants

  • Current Topics in Plant Research
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

This article reviews phenomena of magnetoreception in plants and provides a survey of the relevant literature over the past 80 years. Plants react in a multitude of ways to geomagnetic fields—strong continuous fields as well as alternating magnetic fields. In the past, physiological investigations were pursued in a somewhat unsystematic manner and no biological advantage of any magnetoresponse is immediately obvious. As a result, most studies remain largely on a phenomenological level and are in general characterised by a lack of mechanistic insight, despite the fact that physics provides several theories that serve as paradigms for magnetoreception. Beside ferrimagnetism, which is well proved for bacterial magnetotaxis and for some cases of animal navigation, two further mechanisms for magnetoreception are currently receiving major attention: (1) the “radical-pair mechanism” consisting of the modulation of singlet–triplet interconversion rates of a radical pair by weak magnetic fields, and (2) the “ion cyclotron resonance” mechanism. The latter mechanism centres around the fact that ions should circulate in a plane perpendicular to an external magnetic field with their Lamor frequencies, which can interfere with an alternating electromagnetic field. Both mechanisms provide a theoretical framework for future model-guided investigations in the realm of plant magnetoreception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

B:

Magnetic flux density

BAC:

Alternating magnetic field (generated by alternating current)

BDC:

Static magnetic field (generated by directed current)

ELF:

Extremely low frequency (i.e. magnetic field)

EMF:

Electromagnetic field

ISC:

Intersystem crossing

ICR:

Ion-cyclotron resonance

IPR:

Ion-parametric resonance

LF:

Low frequency (i.e. magnetic field)

QED:

Quantum electrodynamics

References

  • Adair RK (1991) Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Phys Rev A 43:1039–1048

    Article  PubMed  Google Scholar 

  • Adair RK (1992) Criticism of Lednev’s mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 13:231–235

    PubMed  Google Scholar 

  • Adair RK (1997) Hypothetical biophysical mechanisms for the action of weak low frequency electromagnetic fields at the cellular level. Radiat Prot Dosimetry 72:271–278

    Google Scholar 

  • Adair RK (1999) Effects of very weak magnetic fields on radical pair reformation. Bioelectromagnetics 20:255–263

    Article  PubMed  Google Scholar 

  • Afraimovich EL, Ashkaliev YF, Aushev VM, Beletsky AB, Vodyannikov VV, Leonovich LA, Lesyuta OS, Lipko YV, Mikhalev AV, Yakovets F (2002) Simultaneous radio and optical observations of the mid-latitude atmospheric response to a major geomagnetic storm of 6–8 April 2000. J Atmos Solar Terr Phys 64:1943–1955

    Article  Google Scholar 

  • Akhmedova MM, Hossain T (1986) Effect of a constant magnetic field on some metabolic processes in cotton seedlings. Elektron Obrab Mater 5:68–69

    Google Scholar 

  • Akoyunoglou G (1964) Effect of a magnetic field on carboxydismutase. Nature 202:452–454

    PubMed  Google Scholar 

  • Aksenov SI, Bulychev AA, TI, Turovetskii VB (2000) Effect of a low-frequency magnetic field on esterase activity and change in pH in wheat germ during swelling of wheat seeds. Biofizika 45:737–745

    PubMed  Google Scholar 

  • Aksenov SI, Grunina TI, Goriachev SN (2001) Characteristics of low frequency magnetic field effect on swelling of wheat seeds at various stages. Biofizika 46:1127–1132

    PubMed  Google Scholar 

  • Aladjadjiyan A (2002) Study of the influence of magnetic field on some biological characteristics of Zea mays. J Cent Eur Agric 3:89–94

    Google Scholar 

  • Alexander MP, Doijode SD (1995) Electromagnetic field: a novel tool to increase germination and seedling vigor of conserved onion (Allium cepa L.) and rice (Oryza sativa L.) seeds with low viability. Plant Genet Resource Newslett 104:1–5

    Google Scholar 

  • Alexander MP, Rajasekharan PE (1992) Effect of electromagnetically pulsed nutrient medium on germination and tube growth of Impatiens balsamina L. pollen. Ind J Plant Genet Res 5:83–88

    Google Scholar 

  • Alipov YD, Belyaev IY (1996) Difference in frequency spectrum of extremely-low-frequency effects on the genome conformational state of AB1157 and EMG2 E. coli cells. Bioelectromagnetics 17:384–387

    Article  PubMed  Google Scholar 

  • Andre M, Norqvist P, Andersson L, Eliasson L, Eriksson AI, Blomberg L, Erlandson RE, Waldemark J (1998) Ion energization mechanisms at 1700 km in the auroral region. J Geophys Res 103:4199–4222

    Article  Google Scholar 

  • Antonow G, Armjanov N, Todorov T (1982) Untersuchungen zum Einfluß des Magnetfeldes auf die Keimenergie von Samen und den Ertrag (bulg.). Selskostopanska Techn (Sofija) 19:5–11

    Google Scholar 

  • Asashima M, Shimada K, Pfeiffer CJ (1991) Magnetic shielding induces early developmental abnormalities in the newt, Cynops pyrrhogaster. Bioelectromagnetics 12:215–224

    PubMed  Google Scholar 

  • Audus LJ (1960) Magnetotropism: a new plant growth response. Nature 185:132–134

    Google Scholar 

  • Audus LJ, Wish JC (1964) Magnetotropism. In: Barnothy MF (ed) Biological effects of magnetic fields, vol 1. Plenum, New York, pp 170–182

  • Balcavage WX, Alvager T, Swez J, Goff CW, Fox MT, Abdullyava S, King MW (1996) A mechanism for action of extremely low frequency electromagnetic fields on biological systems. Biochem Biophys Res Commun 222:374–378

    Article  PubMed  Google Scholar 

  • Baran BA, Degtyarev LS (2001) Magnetic field effect in ion exchange. Russ J Gen Chem 71:1691–1693

    Article  Google Scholar 

  • Baum JW, Naumann CH (1984) Influence of strong magnetic fields on genetic endpoints in Tradescantia tetrads and stamen hairs. Environ Mutagen 6:49–58

    PubMed  Google Scholar 

  • Bauréus Koch CLM, Sommarin M, Persson BRR, Salford LG, Eberhardt JL (2003) Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 24:395–402

    Article  PubMed  Google Scholar 

  • Bazylinski AD, Schlezinger DR, Howes BH, Frankel RB, Epstein SS (2000) Occurrence and distribution of diverse populations of magnetic protists in a chemically stratified coastal salt pond. Chem Geol 169:319–328

    Article  Google Scholar 

  • Beaugnon E, Tournier R (1991) Levitation of organic materials. Nature 349:470

    Article  Google Scholar 

  • Belova NA, Lednev VV (2000a) Activation and inhibition of gravitropic reaction of plants using weak combined magnetic fields. Biofizika 45:1102–1107

    PubMed  Google Scholar 

  • Belova NA, Lednev VV (2000b) Dependence of gravitotropic reaction in segments of flax stems on frequency and amplitude of variable components of a weak combined magnetic field. Biofizika 45:1108–1111

    PubMed  Google Scholar 

  • Belova NA, Lednev VV (2001a) Activation and inhibition of the gravitropic response in the flax stem segments exposed to the permanent magnetic field with magnetic density ranging from 0 to 350 μT. Biofizika 46:118–121

    PubMed  Google Scholar 

  • Belova NA, Lednev VV (2001b) Effects of extremely weak alternatine magnetic fields on the plant gravitropism. Biofizika 46:122–125

    PubMed  Google Scholar 

  • Belyaev IY, Matronchik AY, Alipov YD (1994) The effect of weak static magnetic and alternating magnetic fields on the genome conformational state of E. coli cells: the evidence for model of phase modulation of high frequency oscillations. In: Allen MJ (ed) Charge and field effects in biosystems, vol 4. World Scientific, Singapore, pp 174–184

  • Belyaev IY, Alipov YD, Harms-Ringdahl M (1997) Effects of zero magnetic field on the conformation of chromatin in human cells. Biochim Biophys Acta 1336:465–473

    PubMed  Google Scholar 

  • Belyavskaya NA (2001) Ultrastructure and calcium balance in meristem cells of pea roots exposed to extremely low magnetic fields. Adv Space Res 28:645–650

    Article  PubMed  Google Scholar 

  • Berden M, Zrimec A, Jerman I (2001) New biological detection system for weak ELF magnetic fields and testing of the paramagnetic resonance model (Lednev 1991). Electro Magnetobiol 20:27

    Google Scholar 

  • Berry MV, Geim AK (1997) Of flying frogs and levitrons. Eur J Phys 18:307–313

    Article  Google Scholar 

  • Bieberich E (2000) Probing quantum coherence in a biological system by means of DNA amplification. BioSystems 57:109–124

    Article  PubMed  Google Scholar 

  • Binhi VN, Alipov YD, Belyaev IY (2001) Effect of static magnetic field on E. coli cells and individual rotations of ion-protein complexes. Bioelectromagnetics 22:79–86

    Article  PubMed  Google Scholar 

  • Blackman CF, Benane SG, Rabinowitz JR, House DE, Jones WT, (1985) A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6:327–333

    PubMed  Google Scholar 

  • Blackman CF, Blanchard JP, Benane SG, House DE (1994) Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells. Bioelectromagnetics 15:239–260

    PubMed  Google Scholar 

  • Blakemore RP (1982) Magnetotactic bacteria. Annu Rev Microbiol 36:217–238

    Article  PubMed  Google Scholar 

  • Blanchard JP, Blackman CP (1994) Clarification and amplification of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 15:217–238

    PubMed  Google Scholar 

  • Blank M, Goodman R (1997) Do electromagnetic fields interact directly with DNA? Bioelectromagnetics 18:111–115

    Article  PubMed  Google Scholar 

  • Blank M, Goodman R (1999) Electromagnetic fields may act directly on DNA. J Cell Biochem 75:369–374

    Article  PubMed  Google Scholar 

  • Blank M, Soo L (1996) The threshold for Na, K-ATPase stimulation by electromagnetic fields. Bioelectrochem Bioenerg 40:63–65

    Article  Google Scholar 

  • Blank M, Khorkova O, Goodman R (1994) Changes in polypeptide distribution stimulated by different levels of electromagnetic and thermal stress. Bioelectrochem Bioenerg 33:109–114

    Article  Google Scholar 

  • Boe AA, Salunkhe DK (1963) Effects of magnetic fields on tomato ripening. Nature 199:91–92

    Google Scholar 

  • Boe AA, Do JY, Salunkhe DK (1968) Tomato ripening: effects of high frequency, magnetic field, and chemical treatments. Econ Bot 22:124–134

    Google Scholar 

  • Bogatina NI, Litvin VM, Travkin MP (1986) Wheat roots orientation under the effect of geomagnetic field. Biofizika 31:886–890

    Google Scholar 

  • Brocklehurst B (1996) Free radical mechanism for the effects of environmental electromagnetic fields on biological system. Int J Radiat Biol 69:3–24

    Article  PubMed  Google Scholar 

  • Brown FA Jr (1962) Responses of the planarium, Dugesia, and the protozoan, Paramecium, to very weak horizontal magnetic fields. Biol Bull 123:264–281

    Google Scholar 

  • Brown FA Jr, Chow CS (1973) Lunar-correlated variations in water uptake by bean seeds. Biol Bull 145:265–278

    Google Scholar 

  • Brown FA Jr, Chow CS (1975) Non-equivalence for bean seeds of clockwise and counterclockwise magnetic motion: a novel terrestrial adaptation? Biol Bull 148:370–379

    Google Scholar 

  • Busby DE (1968) Space biomagnetics. Space Life 1:23–63

    Article  Google Scholar 

  • Cantoni O, Sestili P, Fiorani M, Dachà M (1996) Effect of 50 Hz sinusoidal electric and/or magnetic fields on the rate of repair of DNA single strand breaks in cultured mammalian cells exposed to three different carcinogens: methylmethane sulfonate, chromate, and 254 nm UV radiation. Biochem Mol Biol Int 38:527–533

    PubMed  Google Scholar 

  • Carbonell MV, Martinez E, Amaya JM (2000) Stimulation of germination in rice (Oryza sativa L.) by a static magnetic field. Electro Magnetobiol 19:121–128

    Google Scholar 

  • Celestino C, Picazo ML, Toribio M, Alvare-Ude JA, Bardasano JL (1998) Influence of 50 Hz electromagnetic fields on recurrent embryogenesis and germination of cork oak somatic embryos. Plant Cell Tissue Organ Cult 54:65–69

    Article  Google Scholar 

  • Chao L, Walker DR (1967) Effects of a magnetic field on the germination of apple, apricot and peach seeds. Hortic Sci 2:152–153

    Google Scholar 

  • Chatzidimitriou-Dreismann CA, Braendas EJ (1991) Proton delocalization and thermally activated quantum correlations in water: complex scaling and new experimental results. Ber Bunsen Ges 95:263–72

    Google Scholar 

  • Clarkson N, Davies MS, Dixey R (1999) Diatom motility and low frequency electromagnetic fields—a new technique in the search for independent replication of results. Bioelectromagnetics 20:94–100

    Article  PubMed  Google Scholar 

  • Comorosan S, Vieru S, Murgoci P (1972) The effect of electromagnetic field on enzymic substrates. Biochim Biophys Acta 268:620–621

    PubMed  Google Scholar 

  • Cook ES, Smith MJ (1964) Increase of trypsin activity. In: Barnothy MF (ed) Biological effects of magnetic fields. Plenum, New York, pp 246–254

    Google Scholar 

  • Cope FW (1981) Equivalent effects of increased magnetic field and increased temperature on wheat seedling growth; evidence for a super-conductive mechanism in plant growth. Physiol Chem Phys 13:567–568

    Google Scholar 

  • Coulton LA, Barker AT, Van Lierup JE, Walsh MP (2000) The effect of static magnetic fields on the rate of calcium/calmodulin-dependent phosphorylation of myosin light chain. Bioelectromagnetics 21:189–196

    Article  PubMed  Google Scholar 

  • Cremer-Bartels G, Krause K, Mitoskas G, Brodersen D (1984) Magnetic fields of the earth as additional Zeitgeber for endogenous rhythms? Naturwissenschaften 71:567–574

    Article  PubMed  Google Scholar 

  • Dattilo AM, Bracchini L, Loiselle SA, Ovidi E, Tiezzi A, Rossi C (2005) Morphological anomalies in pollen tubes of Actinidia deliciosa (Kiwi) exposed to 50 Hz magnetic field. Bioelectromagnetics 26:153–156

    Article  PubMed  Google Scholar 

  • Davis MS (1996) Effects of 60 Hz electromagnetic fields on early growth in three plant species and a replication of previous results. Bioelectromagnetics 17:154–161

    Article  PubMed  Google Scholar 

  • Dayal S, Singh RP (1986) Effect of seed exposure to magnetic field on the height of tomato plants. Indian J Agric Sci 56:483–486

    Google Scholar 

  • Del Giudice E, Fleischmann M, Preparata G, Talpo G (2002) On the “unreasonable” effects of ELF magnetic fileds upon a system of ions. Bioelectromagnetics 23:522–530

    Article  PubMed  Google Scholar 

  • Dicarlo AL, Hargis MT, Penafiel LM, Litovitz TA (1999) Short-term magnetic field exposure (60 Hz) induce protection against ultraviolet radiation damage. Int J Rad Biol 75:1541–1549

    Article  PubMed  Google Scholar 

  • Drobig J (1988) Saatgut im elektrmagnetischen Feld—zu einigen internationalen Untersuchungen. Arch Acker-Pflanzenbau Bodenkd 9:619–626

    Google Scholar 

  • Durney CH, Rushforth CK, Anderson AA (1988) Resonant AC-DC magnetic fields: calculated response. Bioelectromagnetics 9:315–336

    PubMed  Google Scholar 

  • Edmiston J (1972) The effect of the field of a permanent magnet on the germination and growth of white mustard seeds. Int J Biometeor 16:13–24

    Article  Google Scholar 

  • Eichwald C, Walleczek J (1996) Model for magnetic field effects on radical pair recombination in enzyme kinetics. Biophys J 71:623–631

    PubMed  Google Scholar 

  • Esquivel DMS, Lins de Barros HGP (1986) Motion of magnetotactic microorganisms. J Exp Biol 121:153–163

    Google Scholar 

  • Fardon JC, Poydock SME, Basulto G (1966) Effect of magnetic fields on the respiration of malignant, embryonic and adult tissue. Nature 23:433

    Google Scholar 

  • Feychting M, Ahlbom A (1993) Magnetic fields and cancer in children residing near Swedish high-voltage power lines. Am J Epidemiol 138:467–481

    PubMed  Google Scholar 

  • Fischer G, Tausz M, Kock M, Grill D (2004) Effects of weak 16 2/3 Hz magnetic fields on growth parameters of young sunflower and wheat seedlings. Bioelectromagnetics 25:638–641

    Article  PubMed  Google Scholar 

  • Fomichjova VM, Govorun RD, Danilov VI (1992a) Proliferation activity and cell reproduction in meristems of root seedlings of pea, flax and lentil under conditions of shielding the geomagnetic field. Biofizika 37:745–749

    Google Scholar 

  • Fomichjova VM, Zaslavsky VA, Govorun RD, Danilov VI (1992b) Dynamics of RNA and protein synthesis in cells of root meristem of pea, flax and lentil under conditions of shielding the geomagnetic field. Biofizika 37:750–758

    Google Scholar 

  • Frankel RB (1990) Iron biominerals: an overview. In: Frankel RB, Blakemore RP (eds) Iron biominerals. Plenum, New York, pp 1–6

    Google Scholar 

  • Freyman S (1980) Quantitative analysis of growth in Southern Alberta of two barley cultivars growth from magnetically treated and untreated seed. Can J Plant Sci 60:463–471

    Google Scholar 

  • Gajdardziska-Josifovska M, McClean RG, Schofield MA, Sommer CV, Kean WF (2001) Discovery of nanocrystalline botanical magnetite. Eur J Mineral 13:863–870

    Article  Google Scholar 

  • Gajdardziska-Josifovska M, Schofield MA, Robertson D, McClean R, Kean WF, Sommer C (2002) Botanical iron biominerals: electron diffraction and microscopy identification. Microsc Microanal 8:752–753

    Google Scholar 

  • García-Reina F, Arza-Pascual L (2001) Influence of a stationary magnetic field on water relations in lettuce seeds. I: theoretical considerations. Bioelectromagnetics 22:589–595

    Article  PubMed  Google Scholar 

  • García-Reina F, Pascual L, Fundora IA (2001) Influence of a stationary magnetic field on water relations in lettuce seeds. Part II: experimental results. Bioelectromagnetics 22:596–602

    Article  PubMed  Google Scholar 

  • Geacintov NE, Van Nostrand F, Becker JF, Tinkel JB (1972) Magnetic field induced orientation of photosynthetic systems. Biochim Biophys Acta 267:65–79

    PubMed  Google Scholar 

  • Germanà MA, Chiancone B, Melati MR, Firetto A (2003) Preliminary results on the effect of magnetic fields on anther culture and pollen germination of Citrus Clementina Hort. Ex Tan. In: Hammerschlag FA, Saxena P, Hort A (eds) Proceedings of the XXVI international horticultural congress: biotechnology in horticultural crop improvement: achievements, opportunities and limitations. ISHS Acta Hortic 625:411–418

    Google Scholar 

  • Giovani B, Byrdin M, Ahmad M, Brettel K (2003) Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat Struct Biol 6:489–490

    Article  Google Scholar 

  • Goodman EM, Greenebaum B, Marron MT (1994) Magnetic fields alter translation in Escherichia coli. Bioelectromagnetics 15:77–83

    PubMed  Google Scholar 

  • Goodman R, Blank M (1998) Magnetic field stress induces expression of hsp70. Cell Stress Chaperon 3:79–88

    Article  Google Scholar 

  • Govorun RD, Danilov, Fomichjova VM, Beljavskaja NA, Zinchenko S (1992) Influence of geomagnetic field fluctuations and its shielding on early periods of higher plant germination. Biofizika 37:738–744

    Google Scholar 

  • Gretz MR, Folsom DB, Brown RM Jr (1989) Cellulose biogenesis in bacteria and higher plants is disrupted by magnetic fields. Naturwissenschaften 76:380–383

    Article  PubMed  Google Scholar 

  • Grissom CB (1995) Magnetic field effects in biology: a survey of possible mechanisms with emphasis on radical-pair recombination. Chem Rev 95:3–24

    Article  Google Scholar 

  • Gubbels GH (1982) Seedling growth and yield response of flax, buckwheat, sunflower, and field pea after preseeding magnetic treatment. Can J Plant Sci 62:61–64

    Google Scholar 

  • Gusta LV, Kirkland KJ, Austenson HM (1978) Effects of a brief magnetic exposure on cereal germination and seedling growth. Can J Plant Sci 58:79–86

    Google Scholar 

  • Gutzeit HO (2001) Biological effects of ELF-EMF enhanced stress response: new insights and new questions. Electro Magnetobiol 20:15–26

    Google Scholar 

  • Haberditzl W (1967) Enzyme activity in high magnetic fields. Nature 213:72–73

    Google Scholar 

  • Hahn CR, Orkwiszewski JAJ, Maksymowych (1988) D.C. generated electromagnetic field depress l-phenylalanine-ammonia lyase activity in germinating Triticum aestivum seeds. Ann Meeting Am Soc Plant Physiol Plant Physiol 86:105

    Google Scholar 

  • Halpern MH (1966) Effects of reproducible magnetic fields on the growth of cells in culture. NASDA CR-75121. Natl Astronaut Space Administration, Washington DC

    Google Scholar 

  • Halpern MH, van Dyke JH (1996) Very low magnetic fields: biological effects and their implications for space exploration. Aerospace Med 37:281

    Google Scholar 

  • Harkins TT, Grissom CB (1994) Magnetic field effects on B12 ethanolamine ammonia lyase: evidence for a radical mechanism. Science 263:958–960

    PubMed  Google Scholar 

  • Hasenstein KH, Kuznetsov OA (1999) Graviresponse of lazy-2 tomato seedlings to curvature-inducing magnetic gradients is modulated by light. Planta 208:59–65

    Article  PubMed  Google Scholar 

  • Hirota N, Nakagawa K, Kitazawa K (1999) Effects of a magnetic field on the germination of plants. J Appl Phys 85:5717–5719

    Article  Google Scholar 

  • Hoff AJ, Rademaker H, van Grondelle R, Duysens LNM (1977) On the magnetic field dependence of the yield of the triplet state in reaction centers of photosynthetic bacteria. Biochim Biophys Acta 460:547–554

    PubMed  Google Scholar 

  • Ikehata M, Koana T, Suzuki Y, Shimizu H, Nakagawa M (1999) Mutagenicity and co-mutagenicity fields of static magetic fields detected by bacterial mutation assay. Mutat Res 427:147–156

    PubMed  Google Scholar 

  • Imimoto M, Watanabe K, Fujiwara K (1996) Effects of magnetic flux density and direction of the magnetic field on growth and CO2 exchange rate of potato plantlets in vitro. In: Kozai T (ed) Proceeding of the international symposium on plant production in closed ecosystem. Narita, Japan

  • Jajte J, Zmyslony M, Rajkowska E (2003) Protective effect of melatonin and vitamin E against pro-oxidative action of iron ions and a static magnetic field. Medycyna Pracy 54:23–28

    PubMed  Google Scholar 

  • Jerman I, Jeglič A, Fefer D (1989) Magnetic stimulation of normal and cut spruce seedlings. Biol Vestn 37:45–56

    Google Scholar 

  • Jones RL (1960) Response of growing plants to a uniform daily rotation. Nature 185:775

    PubMed  Google Scholar 

  • Kalmijn AJ (1981) Biophysics of geomagnetic field detection. IEEE Trans Magn 17:1113–1124

    Article  Google Scholar 

  • Kato R (1988) Effects of a magnetic field on the growth of primary roots of Zea mays. Plant Cell Physiol 29:1215–1219

    Google Scholar 

  • Kato R (1990) Effects of very low magnetic field on the gravitropic curvature of Zea roots. Plant Cell Physiol 31:565–568

    Google Scholar 

  • Kato R, Kamada H, Asashima M (1989) Effects of high and low magnetic fields on the growth of hairy roots of Daucus carota and Atropa belladonna. Plant Cell Physiol 30:605–608

    Google Scholar 

  • Kavi PS (1977) The effect of magnetic treatment of soybean seeds and its moisture absorbing capacity. Sci Cult Calcutta 9:405–406

    Google Scholar 

  • Kazymov PP (1973) Movement of bean leaves under conditions of very weak magnetic fields. Fiziologiya Rastienji 20:915–920

    Google Scholar 

  • Khizenkov PK, Dobritsa NV, Netsvetov MV, Driban VM (2001) Influence of low- and superlow-frequency alternating magnetic fields on ionic permeability of cell membranes. Dopv Nats Akad Nauk Ukr 4:161–164

    Google Scholar 

  • Kirschvink JL, Hagadorn JW (2000) A grand unified theory of biomineralization. In: Bäuerlein E (ed) The bio-mineralization of nano- and micro-structure. Wiley, Weinheim, pp 139–150

    Google Scholar 

  • Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Magnetite biomineralization in the human brain. Proc Natl Acad Sci USA 89:7683–7687

    PubMed  Google Scholar 

  • Klein RM, Klein DT (1971) Post-irradiation modulation of ionizing radiation damage to plants. Bot Rev 37:397–433

    Google Scholar 

  • Kobayashi AK, Kirschvink JL, Nesson MH (1995) Ferromagnetism and EMFs. Nature 374:123

    Article  PubMed  Google Scholar 

  • Kobayashi M, Soda N, Miyo T, Ueda Y (2004) Effects of combined DC and AC magnetic fields on germination of hornwort seeds. Bioelectromagnetics 25:552–559

    Article  PubMed  Google Scholar 

  • Kondrachuk AV, Hasenstein KH (2001) The effects of HGMFs on the plant gravisensing system. Adv Space Res 27:1001–1005

    Article  PubMed  Google Scholar 

  • Križaj D, Valenčič V (1989) The effect of ELF magnetic fields and temperature on differential plant growth. J Bioelectricity 8:159–165

    Google Scholar 

  • Krylov AV, Tarakanova GA (1960) Magnetotropism of plants and its nature. Plant Physiol 7:156–160

    Google Scholar 

  • Krylov AV, Tarakanova GA (1960) Magnetotropism of plants and its nature. Fiziologlya Rastienji 7:917–919

    Google Scholar 

  • Kuznetsov AA, Kuznetsov OA (1989) Simulation of gravity force for plants by high gradient magnetic field. Biofizika 35:835–840

    Google Scholar 

  • Kuznetsov OA, Hasenstein KH (1996) Magnetophoretic induction of root curvature. Planta 198:87–94

    Article  PubMed  Google Scholar 

  • Kuznetsov OA, Hasenstein KH (1997) Magnetophoretic induction of curvature in coleoptiles. J Exp Bot 48:1951–1957

    Article  PubMed  Google Scholar 

  • Kuznetsov OA, Hasenstein KH (2001) Intracellular magnetophoresis of statoliths in Chara rhizoids and analysis of cytoplasm viscoelasticity. Adv Space Res 27:887–892

    Article  PubMed  Google Scholar 

  • Kuznetsov OA, Hasenstein KH (2002) Magnetograviphoresis of statoliths and assessment of viscoelasticity of Chara cytoplasm. Eur Cells Mater 3:170–171

    Google Scholar 

  • Kuznetsov OA, Schwuchow J, Sack FD, Hasenstein KH 1999 Curvature induced by amyloplast magnetophoresis in protonemata of the moss Ceratodon purpureus. Plant Physiol 119:645–650

    Article  PubMed  Google Scholar 

  • Lebedjev SJ, Baranskij PI, Litvinenko LG, Shiyan LT (1975a) Physiobiochemical characteristics of plants after pre-sowing treatment with a permanent magnetic field (in Russian). Sov Plant Physiol (Fiziol Rast) 22:84–89

    Google Scholar 

  • Lebedjev SJ, Baranskij PI, Litvinenko LG (1975b) Physiobiochemical characteristics of plants after pre-sowing treatment with a permanent magnetic field. (in Russian). Sov Plant Physiol (Fiziol Rast) 22:103–109

    Google Scholar 

  • Lednev VV (1991) Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12:71–75

    PubMed  Google Scholar 

  • Li Z, Qu A, Zhu W, Yang Y, Shu F (1997) Genetics effect of water treated by magnetic field (4200 GS) on root tip cells of Vicia faba. Chin Environ Sci 17:437–439

    Google Scholar 

  • Liboff AR (1985) Geomagnetic cyclotron resonance in living cells. Biol Phys 9:99–102

    Article  Google Scholar 

  • Liboff AR (1997) Electric field ion cyclotron resonance. Bioelectromagnetics 18:85–87

    Article  PubMed  Google Scholar 

  • Liboff AR, Cherng S, Jenrow KA, Bull A (2003) Calmodulin-dependent cyclic nucleotide phosphodiesterase activity is altered by 20 μT magnetostatic fields. Bioelectromagnetics 24:2–38

    Article  Google Scholar 

  • Lins de Barros DNS, Esquivel J, de Oliveira LPH (1981) Magnetotactic algae. Acad Bas Notas Fis CBPF-NF-48

  • Lins U, Farina M (1999) Organization of cells in magnetotactic multicellular aggregates. Microbiol Res 154:9–13

    Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    PubMed  Google Scholar 

  • Lowenstam HA, Kirschvink JL (1985) Iron biomineralization a geobiological perspective. In: Kirschvink JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms. Plenum, New York, pp 3–15

    Google Scholar 

  • Lucchesini M, Sabatini AM, Vitagliano C, Dario P, Hayashi M, Kano A, Goto E (1992) The pulsed electro-magnetic field stimulation effect on development of Prunus cerasifera in vitro-derived plantlets. Acta Hortic 319:131–136

    Google Scholar 

  • Lustigman K, Isquith IR (1975) The enhanced lethality of Paramecium in dyes under the influence of magnetic fields. Acta Protozool 13:257–266

    Google Scholar 

  • Magrou J, Manigault P (1946) Physiologie vegetale: action du champ magnetique sur le developpement des tumours experimentales chez Pelargonium zonale. CR Acad Sci (Paris) 223:8–11

    Google Scholar 

  • Mahdi A, Gowland PA, Mansfield P, Coupland RE, Lloyd RG (1994) The effect of static 3.0 and 0.5 T magnetic fields and the echoplanar imaging experiment at 0.5 T on E. coli. Br J Radiol 67:983–987

    PubMed  Google Scholar 

  • Malagoli D, Lusvardi M, Gobba F, Ottaviani E (2004) 50 Hz magnetic fields activate mussel immunocyte p38 MAP kinase and induce HSP70 and 90. Cop Biochem Physiol C Toxicol Pharmacol 137:75–79

    Article  Google Scholar 

  • Markov MS, Pilla AA (1994) Static magnetic field modulation of myosin phosphorylation: calcium dependence in two enzyme preparations. Bioelectrochem Bioenerg 35:57–61

    Article  Google Scholar 

  • Markov MS, Pilla AA (1997) Weak static magnetic field modulation of myosin phosphorylation in a cell-free preparation: calcium dependence. Bioelectrochem Bioenerg 43:233–238

    Article  Google Scholar 

  • Markov MS, Wang S, Pilla AA (1993) Effect of weak low-frequency sinusoidal and DC magnetic fields on myosin phosphorylation in a cell-free preparation. Bioelectrochem Bioenerg 30:119–125

    Article  Google Scholar 

  • Maronek DM (1975) Electromagnetic seed treatment increases germination of Koelreuteria paniculata Laxm. Hortic Sci 10:227–228

    Google Scholar 

  • Mavromatos NE (1999) Quantum-mechanical coherence in cell microtubules: a realistic possibility? Bioelectrochem Bioenerg 48:273–284

    Article  PubMed  Google Scholar 

  • McClean RG, Kean WF (1993) Contributions of wood ash magnetism to archaeomagnetic properties of fire pits and hearths. Earth Planet Sci Lett 119:387–394

    Article  Google Scholar 

  • McClean RG, Schofield MA, Kean WF, Sommer CV, Robertson DP, Toth D, Gajdardziska-Josifovska M (2001) Botanical iron minerals: correlation between nanocrystal structure and modes of biological self-assembly. Eur J Mineral 13:1235–1242

    Article  Google Scholar 

  • McLeod BR, Smith SD, Liboff AR (1987a) Calcium and potassium cyclotron resonance curves and harmonics in diatoms. J Bioelectron 6:153–168

    Google Scholar 

  • McLeod BR, Smith SD, Cooksey KE, Liboff AR (1987b) Ion cyclotron resonance frequencies enhance Ca2+-dependent motility in diatoms. J Bioelectron 6:1–12

    Google Scholar 

  • McLeod BR, Liboff AR, Smith SD (1987c) Biological systems in transition: sensitivity to extremely low-frequence fields. Electro Magnetobiol 11:29–42

    Google Scholar 

  • Mericle RP, Mericle LW, Montgomery DJ (1966) Magnetic fields and ionizing radiation: effects and interaction during germination and early seeding development. Radiat Bot 6:111–127

    Article  Google Scholar 

  • Mohtat N, Cozens FL, Hancock-Chen T, Scaiano JC, McLean J, Kim J (1998) Magnetic field effects on the behaviour of radicals in protein and DNA environments. Photochem Photobiol 67:111–118

    Article  PubMed  Google Scholar 

  • Möller A, Sagasser S, Wiltschko W, Schierwater B (2004) Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschaften 91:585–588

    Article  PubMed  Google Scholar 

  • Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R (2004) Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc Natl Acad Sci USA 101:14294–14299

    Article  PubMed  Google Scholar 

  • Mullins JM, Penafiel LM, Juutilainen J, Litovitz TA (1999) Dose-response of electromagnetic field-enhanced ornithine decarboxylase activity. Bioelectrochem Bioenerg 48:193–199

    Article  PubMed  Google Scholar 

  • Muraji M, Asai T, Tatebe W (1998) Primary root growth rate of Zea mays seedlings grown in alternating magnetic field of different frequencies. Bioelectrochem Bioenerg 44:271–273

    Article  Google Scholar 

  • Murphy B (1942) The influence of magnetic fields on seed germination. Am J Bot 29[Suppl 10]:155

    Google Scholar 

  • Murthy NS (1984) Liquid crystallinity in collagen solutions and magnetic orientation of collagen fibrils. Biopolymers 23:1261–1267

    Article  PubMed  Google Scholar 

  • Nakagawa J, Hirota N, Kitazawa K, Shoda M (1999) Magnetic field enhancement of water vaporization. J Appl Phys 86:2923–2925

    Article  Google Scholar 

  • Nanush’yan ER, Murashev VV (2003) Induction of multinuclear cells in the apical meristems of Allium cepa by geomagnetic field outrages. R J Plant Physiol 50:522–526

    Article  Google Scholar 

  • Negishi Y, Hashimoto A, Tsushima M, Dobrota C, Yamshita M, Nakamura T (1999) Growth of pea epicotyl in low magnetic field: implication for space research. Adv Space Res 23:2029–2032

    Article  PubMed  Google Scholar 

  • Neves M, Glielmo M, Martins JL, Lins U (2003) Interaction of magnetotactic bacteria with flagellated protozoa: induced magnetotaxis. Acta Microsc 12[Suppl B]:11–12

    Google Scholar 

  • Nodwell LM, Price NM (2001) Direct use of inorganic colloidal iron by marine mixotrophic phytoplankton. Limnol Oceanogr 46:765–777

    Google Scholar 

  • Nossol B, Buse G, Silny J (1993) Influence of weak static and 50 Hz magnetic fields on the redox activity of cytochrome-C oxidase. Bioelectromagnetics 14:361–372

    PubMed  Google Scholar 

  • Novitskaya GV, Kocheshkova TK, Feofilaktova TV, Novitskii YN (2004) Effect of choline chloride on the lipid content and composition in the leaves of principal magnetically-oriented radish types. Russ J Plant Physiol 51:361–371

    Article  Google Scholar 

  • Novitskii Yu I, Tikhomirova EV (1977) Effect of a permanent magnetic field on dry seed of Vyatka winter rye. Fiziol Rast 24:332–334

    Google Scholar 

  • Novitskii YI, Strekova VY, Tarakanova GA (1966) Effect of a weak magnetic field on the movement of chloroplasts in Elodea. In: Proc Conf Effect of magnetic fields on living organisms. Nauch. Sov po kompleksnoi probleme “Kibernetika”, Moscow, p 53

  • Novitskii YI, Novitskaya GV, Sokolova IA (1990) Lipid content in the leaves of magnetically-oriented radish types grown under varying light intensity. Fisiol Rast 37:54–63

    Google Scholar 

  • Novitsky YI, Novitskaya GV, Kocheshova TK, Nechiporenko GA, Dobrovol’skii MV (2001) Growth of green onions in a weak permanent magnetic field. Russ J Plant Physiol 48:709–715

    Article  Google Scholar 

  • Pacini P, Vanelli GB, Barni T, Ruggiero M, Sardi I, Pacini P, Gulisano M (1999) Effect of 0.2 T static magnetic field on human neurons: remodeling and inhibition of signal transduction without genome instability. Neurosci Lett 267:185–188

    Article  PubMed  Google Scholar 

  • Palmer JD (1963) Organismic spatial response in very weak spatial magnetic fields. Nature 198:1061–1062

    Google Scholar 

  • Parkinson WC, Sulik GL (1992) Diatom response to extremely low-frequency magnetic fields. Radiat Res 130:319–330

    PubMed  Google Scholar 

  • Pavlov P, Gyourov S, Parmakov D (1983) Effect of magnetized water on the yield of greenhouse tomatoes. Fiziol Rast (Sofia) 9:65–70

    Google Scholar 

  • Pazur A (1995) The effect of weak permanent magnetic fields on the electric properties of lipid-bilayers. Z Naturforsch 50c:833–839

    Google Scholar 

  • Pazur A (2001) Electric relaxation processes in lipid-bilayers after exposure to weak magnetic pulses. Z Naturforsch 56c:831–837

    Google Scholar 

  • Pazur A (2003) Effects of a switched weak magnetic field on lecithin liposomes, investigated by nonlinear dielectric spectroscopy. Z Naturforsch 58c:386–394

    Google Scholar 

  • Pazur A (2004) Characterization of weak magnetic field effects in an aqueous glutamic acid solution by nonlinear dielectric spectroscopy and voltametry. Biomagn Res Technol 2:8–19

    Article  PubMed  Google Scholar 

  • Pazur A, Scheer H (1992) The growth of freshwater green algae in weak alternating magnetic fields of 7.8 Hz frequency. Z Naturforsch 47c:690–694

    Google Scholar 

  • Peñuelas J, Llusià J, Martínez B, Fontcuberta J (2004) Diamagnetic susceptibility and root growth responses to magnetic fields in Lens culinaris, Glycine soja, and Triticum aestivum. Electromagnet Biol Med 23:97–112

    Article  Google Scholar 

  • Peteiro-Cartelle FJ, Cabejas-Cerrato J (1989) Influence of a static magnetic field on mitosis in meristematic cells of Allium cepa. J Bioelectricity 8:167–178

    Google Scholar 

  • Phirke PS, Kubde AB, Umbarkar SP (1996) The influence of magnetic field on plant growth. Seed Sci Technol 24:375–392

    Google Scholar 

  • Piatti E, Albertini MC, Baffone W, Fraternale D, Citterio B, Piacentini MP, Dacha M, Vetrano F, Accorsi A (2002) Antibacterial effect of a magnetic field on Serratia marcescens and related virulence to Hordeum vulgare and Rubus fruticosus callus cells. Comp Biochem Physiol B Biochem Mol Biol 132:359–365

    Article  PubMed  Google Scholar 

  • Piruzyan LA, Kuznetsov AA, Chikov VM (1980) About the magnetic heterogeneity of biological systems. Izvestiya Acad Sci USSR Ser Biol 5:645–653

    Google Scholar 

  • Pittman UJ (1962) Growth reaction and magnetotropism in roots of winter wheat (Kharkov 22 M. C.). Can J Plant Sci 42:430–436

    Google Scholar 

  • Pittman UJ (1963a) Effects of magnetism on seedling growth of cereal plants. Biomedical Sci Inst 1:117–122

    Google Scholar 

  • Pittman UJ (1963b) Magnetism and plant growth. I. Effects on germination and early growth of cereal seeds. Can J Plant Sci 43:513–518

    Google Scholar 

  • Pittman UJ (1964) Magnetism and plant growth. II. Effects on root growth of cereals. Can J Plant Sci 44:283–287

    Google Scholar 

  • Pittman UJ (1965) Magnetism and plant growth. III. Effects on germination and early growth of corn and beans. Can J Plant Sci 45:549–555

    Google Scholar 

  • Pittman UJ (1967) Biomagnetic responses in Kharkov 22 M.C. winter wheat. Can J Plant Sci 50:27–733

    Google Scholar 

  • Pittman UJ (1970) Magnetotropic responses in roots of wild oats. Can J Plant Sci 50:350–351

    Google Scholar 

  • Pittman UJ (1972) Biomagnetic responses in potatoes. Can J Plant Sci 52:727–733

    Google Scholar 

  • Pittman UJ (1977) Effects of magnetic seed treatments on yields of barley, wheat, and oats in southern Alberta. Can J Plant Sci 57:37–45

    Google Scholar 

  • Pittman UJ, Anstey TH (1967) Magnetic treatment and seed orientation of single-harvest snap beans (Phaseolus vulgaris L.). Proc Am Soc Hortic Sci 91:310–314

    Google Scholar 

  • Pittman UJ, Ormrod DP (1970) Physiological and chemical features of magnetically treated winter wheat seeds and resultant seedlings. Can J Plant Sci 50:211–217

    Google Scholar 

  • Pittman UJ, Ormrod DP (1971) Biomagnetic responses in germinating malting barley. Can J Plant Sci 51:64–65

    Google Scholar 

  • Pittman UJ, Carefoot JM, Ormrod DP (1979) Effect of magnetic seed treatment on amylotic activity of quiescent and germinating barley and wheat seeds. Can J Plant Sci 59:1007–1011

    Google Scholar 

  • Ponomarev OA, Fesenko EE (2000) The properties of liquid water in electric and magnetic fields. Biofizika 45:389–398

    PubMed  Google Scholar 

  • Portaccio M, De Luca P, Durante D, Grano V, Rossi S, Bencivenga U, Lepore M, Mita DG (2005) Modulation of the catalytic activity of free and immobilized peroxydase by extremely low frequency electromagnetic fields: dependence on frequency. Bioelectromagnetics 26:145–152

    Article  PubMed  Google Scholar 

  • Potenza L, Cucchiarini L, Piatti E, Angelini U, Dachà M (2004a) Effects of high static magnetic field exposure on different DNAs. Bioelectromagnetics 25:352–355

    Article  PubMed  Google Scholar 

  • Potenza L, Ubaldi L, De Sanctis R, De Bellis R, Cucchiarini L, Dacha M (2004b) Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutat Res 561:53–62

    PubMed  Google Scholar 

  • Prasad AV, Miller MW, Cox C, Carstensen EL, Hoops H, Brayman AA (1994) A test of the influence of cyclotron resonance exposure on diatom motility. Health Phys 66:305–312

    PubMed  Google Scholar 

  • Preparata G (1995) Coherence in matter. World Scientific, Singapore

    Google Scholar 

  • Rapley BI, Rowland RE, Page WH, Podd JV (1998) Influence of extremely low frequency magnetic fields on chromosomes and the mitotic cycle in Vicia faba L., the broad bean. Bioelectromagnetics 19:152–161

    Article  PubMed  Google Scholar 

  • Ravera S, Repaci E, Morelli A, Pepe IM, Botter R, Beruto D (2004) Electromagnetic field of extremely low frequency decreased adenylate kinase activity in retinal rod outer segment membranes. Bioelectrochemistry 63:317–320

    Article  PubMed  Google Scholar 

  • Reese JA, Frazier ME, Morris JE, Buschbom RL, Miller DL (1991) Evaluation of changes in diatom mobility after exposure to 16 Hz electromagnetic fields. Bioelectromagnetics 12:21–25

    PubMed  Google Scholar 

  • Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78:707–718

    PubMed  Google Scholar 

  • Rosen AD (1996) Inhibition of calcium channel activation in GH3 cells by static magnetic field. Biochim Biophys Acta 1282:149–155

    PubMed  Google Scholar 

  • Rosen AD (2003) Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys 39:163–174

    Article  PubMed  Google Scholar 

  • Ružič R, Jerman I, Gogala N (1998a) Water stress reveals effects of ELF magnetic fields on the growth of seedlings. Electro Magnetobiol 17:17–30

    Google Scholar 

  • Ružič R, Jerman I, Gogala N (1998b) Effects of weak low-frequency magnetic fields on spruce seed germination under acid conditions. Can J For Res 28:609–616

    Article  Google Scholar 

  • Ružič R, Jerman I, Jeglic A, Fefer D (1992) Electromagnetic stimulation of buds of Castanea sativa Mill. In tissue culture. Electro Magnetobiol 11:145–155

    Google Scholar 

  • Ružič R, Jerman I, Jeglic A, Fefer D (1993) Various effects of pulsed and static magnetic fields on the development of Castanea sativa Mill. in tissue culture. Electro Magnetobiol 12:165–177

    Google Scholar 

  • Ružič R, Vodnik D, Jerman I (2000) Influence of aluminum in biologic effects of ELF magnetic field stimulation. Electro Magnetobiol 19:57–68

    Article  Google Scholar 

  • Saalman E, Galt S, Hamnerius Y, Norden B, (1992) Diatom motility: replication study in search of cyclotron resonance effects. In: Norden B, Ramel C (eds) Interaction mechanisms of low-level electromagnetic fields in living systems. Oxford University Press, Oxford, pp 280–292

    Google Scholar 

  • Sabehat A, Weiss D, Lurie S (1998) Heat-shock proteins and cross-tolerance in plants. Physiol Plant 103:437–441

    Article  Google Scholar 

  • Sakurai I, Kawamura Y, Ikegami A, Iwayanagi S (1980) Magnetoorientation of lecithin crystals. Proc Natl Acad Sci USA 77:7232–7236

    PubMed  Google Scholar 

  • Sandweiss J (1990) On the cyclotroc resonance model of ion transport. Bioelectromagnetics 11:203–205

    PubMed  Google Scholar 

  • Scaiano JC, Cozens FL, McLean J (1994) Model for the rationalization of magnetic field effects in vivo. Application of the radical-pair mechanism to biological systems. Photochem Photobiol 59:585–589

    PubMed  Google Scholar 

  • Scaiano JC, Monahan S, Renaud J (1997) Dramatic effect of magnetite particles on the dynamics of photogenerated free radicals. Photochem Photobiol 65:759–762

    Google Scholar 

  • Schlegel K, Fullekrug M (1999) Schumann resonance parameter changes during high-energy particle precipitation. J Geophys Res 104:10111–10118

    Article  Google Scholar 

  • Schreiber K (1958) An unusual tropism of feeder roots in sugar beets and its possible effect on fertilizer response. Can J Plant Sci 38:124

    Google Scholar 

  • Schrödinger E (1935) Probability relations between seperated systems. Cambridge Phil Soc Proc 31:555–563

    Google Scholar 

  • Schulten K, Staerk H, Weller A, Werner HJ, Nickel B (1976) Magnetic field dependence of the geminate recombination of radical ion pairs in polar solvents. Z Phys Chem NF 101:371–390

    Google Scholar 

  • Schwarzacher JC, Audus LJ (1973) Further studies in magnetotropism. J Exp Bot 24:459–474

    Google Scholar 

  • Semm P, Schneider T, Volirath L (1960) Effects of an Earth-strength magnetic field on electrical activity of pineal cells. Nature 288:607–615

    Article  Google Scholar 

  • Shang G-M, Wu J-C, Yuan Y-J (2004) Improved cell growth and Taxol production of suspension-cultured Taxus chinensis var. mairei in alternating and direct current magnetic fields. Biotechnol Lett 26:875–878

    Article  PubMed  Google Scholar 

  • Shuvalova LA, Ostrovskaia MV, Sosumov EA, Lednev VV (1991) The effect of a weak magnetic field in the paramagnetic resonance mode on the rate of the calmodulin-dependent phosphorylation of myosin in solution. Dokl Akad Nauk SSSR 317:227–230

    PubMed  Google Scholar 

  • Smith S (1987) Calcium cyclotron resonance and diatom mobility. Bioelectromagnetics 8:215–227

    PubMed  Google Scholar 

  • Smith S, McLeod BR, Liboff AR, Cooksey K (1987a) Calcium cyclotron resonance and diatom motility. Bioelectromagnetics 8:215–227

    PubMed  Google Scholar 

  • Smith S, McLeod BR, Liboff AR, Cooksey K (1987b) Calcium cyclotron resonance and diatom motility. Stud Biophys 119:131–136

    Google Scholar 

  • Smith SD, McLeod BR, Liboff AR (1995) Testing the ion cyclotron resonance theory of electromagnetic field interaction with odd and even harmonic tuning for cations. Bioelectrochem Bioenerg 38:161–167

    Article  Google Scholar 

  • Sonneveld A, Duysens LNM, Moerdijk A (1981) Sub-microsecond chlorophyll a delayed fluorescence from photosystem I. Magnetic field-induced increase of the emission field. Biochim Biophys Acta 636:39–49

    PubMed  Google Scholar 

  • Sperber D, Darnsfeld K, Maret G, Weisenseel HM (1981) Oriented growth of pollen tubes in strong magnetic fields. Naturwissenschaften 68:40–41

    Article  Google Scholar 

  • Spruyt E, Verbelen J-P, de Greef JA (1987) Expression of circaseptan and circannual rhythmicity in the imbibition of dry stored bean seeds. Plant Physiol 84:707–710

    Google Scholar 

  • Ssawostin PW (1930a) Magnetophysiologische Untersuchungen. I. Die Rotationsbewegung des Plasmas in einem konstanten magnetischen Kraftfelde. Planta 11:683–726

    Article  Google Scholar 

  • Ssawostin PW (1930b) Magnetwachstumreaktionen bei Pflanzen. Planta 12:327–330

    Article  Google Scholar 

  • Stange BC, Rowland RE, Rapley BI, Podd JV (2002) ELF magnetic fields increase amino acid uptake into Vicia faba L. roots and alter ion movement across the plasma membrane. Bioelectromagnetics 23:47–354

    Article  Google Scholar 

  • Strazisar J, Knez S, Kobe S (2001) The influence of the magnetic field on the Zeta potential of precipitated calcium carbonate. Part Syst Charact 18:278–285

    Article  Google Scholar 

  • Strekova VY, Tarakanova GA, Prudnikova VP, Novitskii YI (1965a) Some physiological and cytological changes in germinating seeds in a constant magnetic field. I. The effect of a non-uniform magnetic field of low intensity. Fiziol Rast 12:920–929

    Google Scholar 

  • Strekova VY, Tarakanova GA, Prudnikova VP, Novitskii YI (1965b) Some physiological and cytological changes in germinating seeds in a constant magnetic field. II. The effect of a uniform magnetic field of low intensity. Fiziol Rast 12:1029–1038

    Google Scholar 

  • Takahashi F, Kamezaki T (1985) Effect of magnetism on growth of Chlorella. Hakkokogaku 63:71–74

    Google Scholar 

  • Takimoto K, Yaguchi H, Miyakoshi J (2001) Extremely low frequency magnetic fields suppress the reduction of germination rate of Arabidopsis thaliana seeds kept in saturated humidity. Biosci Biotechnol Biochem 65:2552–2554

    Article  PubMed  Google Scholar 

  • Teichmann EM, Hengstler JG, Schreiber WG, Akbari W, Georgi H, Hehn M, Schiffer I, Oesch F, Spiess HW, Thelen M (2000) Possible mutagenic effects of magnetic fields (in German). Rofo 172:934–939

    PubMed  Google Scholar 

  • Timmel CR, Till U, Brocklehurst B, McLauchlan KA, Hore PJ (1998) Effects of weak magnetic field on free radical recombination reactions. Mol Phys 95:71–89

    Article  Google Scholar 

  • Tomita-Yokotani K, Hashimoto H, Yanasigawa M, Nakamura T, Hasegawa K, Yamashita M (2001) Growth of Avena seedlings under a low magnetic field (in Japanese). Biol Sci Space 15:258–259

    PubMed  Google Scholar 

  • Torbet J (1987) Using magnetic orientation to study structure and assembly. Trends Biochem Sci 12:327–330

    Article  Google Scholar 

  • Torbet J, Dickens MJ (1984) Orientation of skeletal muscle actin in strong magnetic fields. FEBS Lett 173:403–406

    Article  PubMed  Google Scholar 

  • Torbet J, Ronzier MC (1984) Aggregation of blood platelets in static magnetic fields. Biochem J 219:1057–1059

    PubMed  Google Scholar 

  • Torres de Araujo FF, Pires MA, Frankel RB, Bicudo CEM (1986) Magnetite and magnetotaxis in algae. Biophys J 50:375–378

    Google Scholar 

  • Tran A, Polk C (1979) Schumann resonances and electrical conductivity of the atmosphere and lower ionosphere. I. Effects of conductivity at various altitudes on resonance frequencies and attenuation. J Atmos Terrestr Phys 41:1241–1248

    Article  Google Scholar 

  • Vakharia DN, Davariya RL, Parameswaran M (1991) Influence of magnetic treatment on groundnut yield and yield attributes. Ind J Plant Physiol 34:131–136

    Google Scholar 

  • Vassilev PM, Dronzine RT, Vassileva MP, Georgiev GA (1982) Parallel arrays of microtubules formed in electric and magnetic fields. Biosci Rep 2:1025–1029

    Article  PubMed  Google Scholar 

  • Volpe P (2003) Interactions of zero-frequency and oscillating magnetic fields with biostructures and biosystems. Photochem Photobiol Sci 2:637–648

    Article  PubMed  Google Scholar 

  • Waliszewski P, Skwarek R, Jeromin L, Manikowski H (1999) On the mitochondriasl aspect of reactive oxygen species action in external magnetic fields. J Photochem Photobiol 52:137–140

    Google Scholar 

  • Walleczek J (1995) Magnetokinetic effects on radical pairs: a paradigm for magnetic field interactions with biological systems at lower than thermal energy. Adv Chem 250:395–420

    Google Scholar 

  • Weaver JC, Astumian RD (1992) Estimates for ELF effects: noise-based thresholds and the number of experimental conditions required for empirical searches. Bioelectromagnetics [Suppl] 1:119–138

    Google Scholar 

  • Weaver JC, Vaughan TE, Martin G (1999) Biological effects due to weak electric and magnetic fields: the temperature variation threshold. Biophys J 76:3026–3030

    PubMed  Google Scholar 

  • Weise SE, Kuznetsov OA, Hasenstein KH, Kiss JZ (2000) Displacement of amyloplasts in Arabidopsis inflorescence stems causes localized curvature. Plant Cell Physiol 41:702–709

    PubMed  Google Scholar 

  • Wever R (1968) Einfluß schwacher elektro-magnetischer Felder auf die Periodik des Menschen. Naturwissenschaften 55:29–32

    Article  PubMed  Google Scholar 

  • Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Yano A, Hidaka E, Fujiwara K, Iimoto M (2001) Induction of primary root curvature in radish seedlings in a static magnetic field. Bioelectromagnetics 22:194–199

    Article  PubMed  Google Scholar 

  • Yano A, Ohashi Y, Hirasaki T, Fujiwara K (2004) Effects of a 60 Hz magnetic field on photosynthetic CO2 uptake and early growth of radish seedlings. Bioelectromagnetics 25:572–581

    Article  PubMed  Google Scholar 

  • Yost MG, Liburdy RP (1992) Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS Lett 296:117

    Article  PubMed  Google Scholar 

  • Zhadin MN (1998) Combined action of static and alternating magnetic fields on ion motion in a macromolecule: theoretical aspects. Bioelectromagnetics 19:279–292

    Article  PubMed  Google Scholar 

  • Zhadin MN (2001) Review of Russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics 22:27–45

    Article  PubMed  Google Scholar 

  • Zhadin MN, Fesenko EE (1990) Ionic cyclotron resonance in biomolecules. Biomedical Science 1:245–250

    PubMed  Google Scholar 

  • Zhadin MN, Novikov VV, Barnes FS, Pergola NF (1998) Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution. Bioelectromagnetics 19:41–45

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Galland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galland, P., Pazur, A. Magnetoreception in plants. J Plant Res 118, 371–389 (2005). https://doi.org/10.1007/s10265-005-0246-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-005-0246-y

Keywords

Navigation