Skip to main content

Advertisement

Log in

Effects of Continuous and Intermittent Magnetic Fields on Oxidative Parameters In vivo

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Continuous and intermittent 50 Hz, 1.5 mT magnetic field with the exposure period of 4 h/day for 4 days was used to investigate its possible effect on adult guinea pigs. Tissues and plasma specimens were assessed by biochemical parameters. Malondialdehyde (MDA), glutathione (GSH), nitric oxide (NO) levels and myeloperoxidase activity (MPO) were examined in plasma, liver and brain tissues. All parameters were determined by spectrophotometer. While intermittent magnetic field was effective on plasma lipid peroxidation, continuous magnetic field was found to be effective on plasma MPO activity and NO levels. Augmentation of lipid peroxidation was also observed in liver tissue both intermittent and continuous magnetic field exposures. These results indicate that both the intermittent and continuous magnetic field exposures affect various tissues in a distinct manner because of having different tissue antioxidant status and responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dragasevic N, Potrebic A, Damjanovic A, Stefanova E, Kostic VS (2002) Therapeutic efficacy of bilateral prefrontal slow repetitive transcranial magnetic stimulation in depressed patients with Parkinson’s disease: an open study. Mov Disord 17:528–532. doi:10.1002/mds.10109

    Article  PubMed  Google Scholar 

  2. Jelenkovıc A, Janac B, Pesic V, Jovanovic DM, Vasiljevic I, Prolic Z (2006) Effects of extremely low-frequency magnetic field in the brain of rats. Brain Res Bull 68:355–360. doi:10.1016/j.brainresbull.2005.09.011

    Article  PubMed  CAS  Google Scholar 

  3. Pesić V, Janać B, Jelenković A, Vorobyov V, Prolić Z (2004) Non-linearity in combined effects of ELF magnetic field and amphetamine on motor activity in rats. Behav Brain Res 150:223–227. doi:10.1016/j.bbr.2003.07.003

    Article  PubMed  CAS  Google Scholar 

  4. Prolic Z, Jovanovic R, Konjevic G, Janac B (2003) Behavioral differences of the insect Morimus fumereus (Coleoptera, Cerambycidae) exposed to an extremely low frequency magnetic field. Electromagn Biol Med 22:63–73. doi:10.1081/JBC-120020358

    Article  Google Scholar 

  5. Sirmatel O, Sert C, Tumer C, Ozturk A, Bilgin M, Ziylan Z (2007) Change of nitric oxide concentration in men exposed to a 1.5 T constant magnetic field. Bioelectromagnetics 28:152–154. doi:10.1002/bem.20281

    Article  PubMed  CAS  Google Scholar 

  6. Harakawa S, Inoue N, Hori T, Tochio K, Kariya T, Takahashi K et al (2005) Effects of 50 Hz electric field on plasma lipid peroxide level and antioxidant activity in rats. Bioelectromagnetics 26:589–594. doi:10.1002/bem.20137

    Article  PubMed  CAS  Google Scholar 

  7. Bethwaite P, Cook A, Kennedy J, Pearce N (2001) Acute leukemia in electrical workers: a New Zealand case-control study. Cancer Causes Control 12:683–689. doi:10.1023/A:1011297803849

    Article  PubMed  CAS  Google Scholar 

  8. Håkansson N, Gustavsson P, Sastre A, Floderus B (2003) Occupational exposure to extremely low frequency magnetic fields and mortality from cardiovascular disease. Am J Epidemiol 158:534–542. doi:10.1093/aje/kwg197

    Article  PubMed  Google Scholar 

  9. Labrèche F, Goldberg MS, Valois MF, Nadon L, Richardson L, Lakhani R et al (2003) Occupational exposures to extremely low frequency magnetic fields and postmenopausal breast cancer. Am J Ind Med 44:643–652. doi:10.1002/ajim.10264

    Article  PubMed  Google Scholar 

  10. Kula B, Sobczak A, Grabowska-Bochenek R, Piskorska D (1999) Effect of electromagnetic field on serum biochemical parameters in steelworkers. J Occup Health 41:177–180. doi:10.1539/joh.41.177

    Article  CAS  Google Scholar 

  11. Till U, Timmel CR, Brocklerhurst B, Hore PJ (1998) The influence of very small magnetic fields on radical recombination reactions in the limit of slow recombination. Chem Phys Lett 208:7–14. doi:10.1016/S0009-2614(98)01158-0

    Article  Google Scholar 

  12. Neumann E (2000) Digression on chemical electromagnetic field effects in membrane signal transduction–cooperativity paradigm of the acetylcholine receptor. Bioelectrochemistry 52:43–49. doi:10.1016/S0302-4598(00)00082-9

    Article  PubMed  CAS  Google Scholar 

  13. Lalo UV, Pankratov YV, Mikhailik OM (1994) Steady magnetic fields effect on lipid peroxidation kinetics. Redox Rep 1:71–75

    CAS  Google Scholar 

  14. Watanabe Y, Nakagawa M, Miyakoshi Y (1997) Enhancement of lipid peroxidation in the liver of mice exposed to magnetic fields. Ind Health 35:285–290. doi:10.2486/indhealth.35.285

    Article  PubMed  CAS  Google Scholar 

  15. Fiorani M, Biagiarelli B, Vetrano F, Guidi G, Dachà M, Stocchi V (1997) In vitro effects of 50 Hz magnetic fields on oxidatively damaged rabbit red blood cells. Bioelectromagnetics 18:125–131. doi :10.1002/(SICI)1521-186X(1997)18:2<125::AID-BEM5>3.0.CO;2-4

    Article  PubMed  CAS  Google Scholar 

  16. Janeiro DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–540. doi:10.1016/0891-5849(90)90131-2

    Article  Google Scholar 

  17. Suematsu M, Schmid-Schönbein GW, Chavez-Chavez RH, Yee TT, Tamatani T, Miyasaka M et al (1993) In vivo visualization of oxidative changes in microvessels during neutrophil activation. Am J Physiol 264:H881–H891

    PubMed  CAS  Google Scholar 

  18. Roy S, Noda Y, Eckert V, Traber MG, Mori A, Liburdy R et al (1995) The phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1 mT (60 Hz) magnetic field. FEBS Lett 376:164–166. doi:10.1016/0014-5793(95)01266-X

    Article  PubMed  CAS  Google Scholar 

  19. Yoshikawa T, Tanigawa M, Tanigawa T, Imai A, Hongo H, Kondo M (2000) Enhancement of nitric oxide generation by low frequency electromagnetic field. Pathophysiology 7:131–135. doi:10.1016/S0928-4680(00)00040-7

    Article  PubMed  CAS  Google Scholar 

  20. Canseven AG, Seyhan N (2005) Design, installation and standardization of homogenous magnetic field systems for experimental animals IFMBE Proceedings, vol. 11. Prague: IFMBE, 2005. ISSN 1727–1983. Editors: Jiri Hozman, Peter Kneppo (Proceedings of the 3rd European Medical & Biological Engineering Conference—EMBEC’05.Prague, Czech Republic, (Nov. 20–25, 2005), pp 2333–2338

  21. Kurtel H, Granger DN, Tso P (1992) Grisham, Vulnerability of intestinal interstitial fluid to oxidant stress. Am J Physiol 263:G573–G578

    PubMed  CAS  Google Scholar 

  22. Elman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:70–77. doi:10.1016/0003-9861(59)90090-6

    Article  Google Scholar 

  23. Casini A, Ferrali M, Pompelam A, Maellaro A, Comborti M (1986) Lipid peroxidation and cellular damage in extrahepatic tissues of bromobenzene intoxicated mice. Am J Pathol 123:520–531

    PubMed  CAS  Google Scholar 

  24. Aykaç G, Uysal M, Yalçın AS, Koçak-Toker N, Sivas A, Öz H (1985) The effect of chronic ethanol ingestion on hepatic lipid peroxide, glutathione, glutathione peroxidase and glutathione transferase in rats. Toxicology 36:71–76. doi:10.1016/0300-483X(85)90008-3

    Article  PubMed  Google Scholar 

  25. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analyses of nitrate, nitrite and (15N) nitrate in biological fluids. Anal Biochem 126:131–138. doi:10.1016/0003-2697(82)90118-X

    Article  PubMed  CAS  Google Scholar 

  26. Miranda KM, Espey MG, Wink DA (2001) A rapid simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:67–71. doi:10.1006/niox.2000.0319

    Article  CAS  Google Scholar 

  27. Glowick SP, Kaplan SD (1955) Methods in enzymology. Academic Press, New York, NY, pp 769–782

    Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  29. Kula B, Drozdz M (1996) A study of magnetic field effects on fibroblasts cultures. Parts I: The evaluation of effects of static and extremely low frequency magnetic fields on vital functions of fibroblasts. Bioelectrochem Bioenerg 39:21–26. doi:10.1016/0302-4598(95)01842-5

    Article  CAS  Google Scholar 

  30. Kula B, Obczak A, Kuska R (2000) Effects of static and ELF magnetic fields on free-radical processes in rat liver and kidney. Electro Magnetobiol 19:99–105

    CAS  Google Scholar 

  31. Kula B, Sboczak A, Kuska R (2002) Effects of electromagnetic field on free radical processes in steelworkers. Part I. Magnetic field influence on the antioxidant activity in red blood cells and plasma. J Occup Health 44:226–229. doi:10.1539/joh.44.226

    Article  CAS  Google Scholar 

  32. Jin Y, Wang H, Cheng Y, Gu H (1998) Effects of static magnetic fields on free radical metabolism of human body. Wei Sheng Yan Jiu 27:97–99

    PubMed  CAS  Google Scholar 

  33. Lee BC, Baik KY, Nam TJ, Johng HM, Lim JK, Sohn UD, et al (2002) 60 Hz magnetic field induces lipid peroxidative stress in cortex, midbrain and cerebellum of Mouse. Biological effects of electromagnetic fields. 2nd International workshop. 7–11 October, Rhodes, Greece, pp 820–825

  34. Raps SP, Lai JC, Hertz L, Cooper AJ (1989) Glutathione is present in high concentrations in cultured astrocytes but not in cultured neurons. Brain Res 31:398–401. doi:10.1016/0006-8993(89)91178-5

    Article  Google Scholar 

  35. Agus DB, Gambhir SS, Pardridge WM, Spielholz C, Baselga J, Vera JC et al (1997) Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J Clin Invest 100:2842–2848. doi:10.1172/JCI119832

    Article  PubMed  CAS  Google Scholar 

  36. Myhrstad MC, Carlsen H, Nordström O, Blomhoff R, Moskaug JØ (2002) Flavonoids increase the intracellular glutathione level by transactivation of the gamma-glutamylcysteine synthetase catalytical subunit promoter. Free Radic Biol Med (Paris) 32:386–693

    Article  CAS  Google Scholar 

  37. Scharf G, Prustomersky S, Knasmuller S, Schulte-Hermann R, Huber WW (2003) Enhancement of glutathione and g-glutamylcysteine synthetase, the rate limiting enzyme of glutathione synthesis, by chemoprotective plant-derived food and beverage components in the human hepatoma cell line HepG2. Nutr Cancer 45:74–83. doi:10.1207/S15327914NC4501_9

    Article  PubMed  CAS  Google Scholar 

  38. Alía M, Mateos R, Ramos S, Lecumberri E, Bravo L, Goya L (2006) Influence of quercetin and rutin on growth and antioxidant defense system of a human hepatoma cell line (HepG2). Eur J Nutr 45:19–28. doi:10.1007/s00394-005-0558-7

    Article  PubMed  CAS  Google Scholar 

  39. Noda Y, Mori A, Liburdy RP, Packer L (2000) Pulsed magnetic fields enhance nitric oxide synthase activity in rat cerebellum. Pathophysiology 7:127–130. doi:10.1016/S0928-4680(00)00039-0

    Article  PubMed  CAS  Google Scholar 

  40. Seyhan N, Canseven AG (2006) In vivo effects of ELF MFs on collagen synthesis, free radical processes, and natural antioxidant system, respiratory burst system, immune system activities, and electrolytes in the skin, plasma, spleen, lung, kidney, and brain tissues. Electromagn Biol Med 25:291–305. doi:10.1080/15368370601054787

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şule Coşkun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coşkun, Ş., Balabanlı, B., Canseven, A. et al. Effects of Continuous and Intermittent Magnetic Fields on Oxidative Parameters In vivo. Neurochem Res 34, 238–243 (2009). https://doi.org/10.1007/s11064-008-9760-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9760-3

Keywords

Navigation