Skip to main content
Log in

Establishment of a picloram-induced somatic embryogenesis system in Vitis vinifera cv. chardonnay and genetic transformation of a stilbene synthase gene from wild-growing Vitis species

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

To facilitate genetic improvement, an efficient system of embryogenic culture induction, maintenance and transformation in Vitis vinifera cv. Chardonnay was developed using picloram. Whole flowers produced the most embryogenic calluses on induction media containing Murashige and Skoog’s (MS) basal salts and 3.0 mg L−1 picloram with different concentrations of 2,4-dichlorophenoxyacetic acid and 6-benzyladenine. Proembryonic masses (PEM) cultured on maintenance and proliferation media (MPM) containing MS basal salts and picloram had the highest proliferation efficiency within 2 months. Additionally, the best PEM formation was found with MPM containing MS basal salts and 2.0 mg L−1 picloram. Then this PEM cultured on MPM were transferred to embryo germination medium containing MS basal salts, 0.2 mg L−1 kinetin and 0.1 mg L−1 2-naphthoxyacetic acid, the optimal medium for normal plantlets regeneration. A single copy of the stilbene synthase gene VpSTSgDNA2 from Chinese wild Vitis pseudoreticulata was transferred into regenerated Chardonnay via Agrobacterium tumefaciens-mediated transformation and confirmed by Southern blot analysis. The positive transgenic grapevine lines exhibited higher levels of stilbene and H2O2 than wild-type vines and could slightly reduced the growth of powdery mildew.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguero C, Meredith CP, Dandekar A (2006) Genetic transformation of Vitis vinifera L. cvs Thompson seedless and chardonnay with the pear PGIP and GFP encoding genes. Vitis 45(1):1

    Google Scholar 

  • Amar AB, Cobanov P, Boonrod K, Krczal G, Bouzid S, Ghorbel A, Reustle G (2007) Efficient procedure for grapevine embryogenic suspension establishment and plant regeneration: role of conditioned medium for cell proliferation. Plant Cell Rep 26(9):1439–1447

    Article  PubMed  Google Scholar 

  • Azadi P, Chin DP, Kuroda K, Khan RS, Mii M (2010) Macro elements in inoculation and co-cultivation medium strongly affect the efficiency of Agrobacterium-mediated transformation in Lilium. Plant Cell Tissue Org Cult 101(2):201–209

    Article  CAS  Google Scholar 

  • Bernhard D, Tinhofer I, Tonko M, Hübl H, Ausserlechner M, Greil R, Kofler R, Csordas A (2000) Resveratrol causes arrest in the S-phase prior to Fas-independent apoptosis in CEM-C7H2 acute leukemia cells. Cell Death Differ 7(9):834–842

    Article  CAS  PubMed  Google Scholar 

  • Bouquet A, Torregrosa L, Iocco P, Thomas MR (2007) Grapevine (Vitis vinifera L.). Agrobacterium Protoc 2:273–285

    Google Scholar 

  • Chiou C-Y, Wu K, Yeh K-W (2008) Characterization and promoter activity of chromoplast specific carotenoid associated gene (CHRC) from Oncidium Gower Ramsey. Biotechnol Lett 30(10):1861–1866

    Article  CAS  PubMed  Google Scholar 

  • Dabauza M, Velasco L, Pazos-Navarro M, Pérez-Benito E, Hellín P, Flores P, Gómez-Garay A, Martínez M, Lacasa A (2014) Enhanced resistance to Botrytis cinerea in genetically-modified Vitis vinifera L. plants over-expressing the grapevine stilbene synthase gene. Plant Cell Tissue Org Cult. doi: 10.1007/s11240-014-0598-x

  • Dai R, Ge H, Howard S, Qiu W (2012) Transcriptional expression of Stilbene synthase genes are regulated developmentally and differentially in response to powdery mildew in Norton and Cabernet Sauvignon grapevine. Plant Sci 197:70–76

    Article  CAS  PubMed  Google Scholar 

  • Dhekney S, Li Z, Dutt M, Gray D (2008) Agrobacterium-mediated transformation of embryogenic cultures and plant regeneration in Vitis rotundifolia Michx. (muscadine grape). Plant Cell Rep 27(5):865–872

    Article  CAS  PubMed  Google Scholar 

  • Dhekney SA, Li ZT, Zimmerman TW, Gray DJ (2009a) Factors influencing genetic transformation and plant regeneration of Vitis. Am J Enol Vitic 60(3):285–292

    CAS  Google Scholar 

  • Dhekney SA, Li ZT, Compton ME, Gray DJ (2009b) Optimizing initiation and maintenance of Vitis embryogenic cultures. HortScience 44(5):1400–1406

    Google Scholar 

  • Donald T, Pellerone F, Adam-Blondon A-F, Bouquet A, Thomas M, Dry I (2002) Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor Appl Genet 104(4):610–618

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Du L, Lou Q, Zhang X, Jiao S, Liu Y, Wang Y (2014) Construction of flower-specific chimeric promoters and analysis of their activities in transgenic torenia. Plant Mol Biol Rep 32(1):234–245

    Article  Google Scholar 

  • Fan C, Pu N, Wang X, Wang Y, Fang L, Xu W, Zhang J (2008) Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tissue Org Cult 92(2):197–206

    Article  CAS  Google Scholar 

  • Faure O, Dewitte W, Nougarède A, Van Onckelen H (1998) Precociously germinating somatic embryos of Vitis vinifera have lower ABA and IAA levels than their germinating zygotic counterparts. Physiol Plant 102(4):591–595

    Article  CAS  Google Scholar 

  • Faurie B, Cluzet S, Mérillon J-M (2009) Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures. J Plant Physiol 166(17):1863–1877

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Budde I, Hain R (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J 11(3):489–498

    Article  CAS  Google Scholar 

  • Fitch MM, Moore PH (1990) Comparison of 2, 4-D and picloram for selection of long-term totipotent green callus cultures of sugarcane. Plant Cell Tissue Org Cult 20(3):157–163

    CAS  Google Scholar 

  • Franco G, Ferreira (2006) In vitro regeneration of Didymonopanax morototoni. Braz J Biol 66(2A):455–462

    Article  CAS  PubMed  Google Scholar 

  • Franks T, He DG, Thomas M (1998) Regeneration of transgenic shape Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis. Mol Breed 4(4):321–333

    Article  CAS  Google Scholar 

  • Fung RW, Gonzalo M, Fekete C, Kovacs LG, He Y, Marsh E, McIntyre LM, Schachtman DP, Qiu W (2008) Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol 146(1):236–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gambino G, Ruffa P, Vallania R, Gribaudo I (2007) Somatic embryogenesis from whole flowers, anthers and ovaries of grapevine (Vitis spp.). Plant Cell Tissue Org Cult 90(1):79–83

    Article  CAS  Google Scholar 

  • Gerdakaneh M, Zohori M (2013) The effect of picloram on somatic embryogenesis of different explants of strawberry (Fragaria ananassa Duch.). British. Biotechnol J 3(2):133–142

    Google Scholar 

  • Goebel-Tourand I, Mauro M-C, Sossountzov L, Miginiac E, Deloire A (1993) Arrest of somatic embryo development in grapevine: histological characterization and the effect of ABA, BAP and zeatin in stimulating plantlet development. Plant Cell Tissue Org Cult 33(1):91–103

    Article  CAS  Google Scholar 

  • Goodwin P, Hsiang T, Erickson L (2000) A comparison of stilbene and chalcone synthases including a new stilbene synthase gene from Vitis riparia cv. Gloire de Montpellier. Plant Sci 151(1):1–8

    Article  CAS  Google Scholar 

  • Gray D (1989) Effects of dehydration and exogenous growth regulators on dormancy, quiescence and germination of grape somatic embryos. In Vitro Cell Dev Biol 25:1173–1178

    Article  Google Scholar 

  • Gray DJ (1995) Somatic embryogenesis in grape. In: Somatic embryogenesis in woody plants 2. Kluwer Academic Publishers, Dordrecht, p 191–217

  • Greene S (2005) Sittig’s handbook of pesticides and agricultural chemicals. William Andrew, p 921–978

  • Gribaudo I, Gambino G, Vallania R (2004) Somatic embryogenesis from grapevine anthers: the optimal developmental stage for collecting explants. Am J Enol Vitic 55(4):427–430

    Google Scholar 

  • Groll J, Mycock D, Gray V, Laminski S (2001) Secondary somatic embryogenesis of cassava on picloram supplemented media. Plant Cell Tissue Org Cult 65(3):201–210

    Article  CAS  Google Scholar 

  • Guan X, Zhao H, Xu Y, Wang Y (2011) Transient expression of glyoxal oxidase from the Chinese wild grape Vitis pseudoreticulata can suppress powdery mildew in a susceptible genotype. Protoplasma 248(2):415–423

    Article  CAS  PubMed  Google Scholar 

  • Guan X, Buchholz G, Nick P (2014) Actin marker lines in grapevine reveal a gatekeeper function of guard cells. J Plant Physiol 171(13):1164–1173

    Article  CAS  PubMed  Google Scholar 

  • Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: what are we going to express? Trends Biotechnol 23(6):275–282

    Article  CAS  PubMed  Google Scholar 

  • He G, Lazzeri P (2001) Improvement of somatic embryogenesis and plant regeneration from durum wheat (Triticum turgidum var. durum Desf.) scutellum and inflorescence cultures. Euphytica 119(3):369–376

    Article  CAS  Google Scholar 

  • Hirabayashi K, Akihama (1976) In vitro differentiation of shoot from anther callus in Vitis. HortScience 11:511–512

    Google Scholar 

  • Hsieh T-C, Wang Z, Deng H, Wu JM (2008) Identification of Glutathione Sulfotransferase-π (GSTP1) as a new resveratrol targeting protein (RTP) and studies of resveratrol-responsive protein changes by resveratrol affinity chromatography. Anticancer Res 28(1A):29–36

    PubMed Central  PubMed  Google Scholar 

  • Iocco P, Franks T, Thomas M (2001) Genetic transformation of major wine grape cultivars of Vitis vinifera L. Transgenic Res 10(2):105–112

    Article  CAS  PubMed  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220

    Article  CAS  PubMed  Google Scholar 

  • Jayasankar S, Gray D, Litz R (1999) High-efficiency somatic embryogenesis and plant regeneration from suspension cultures of grapevine. Plant Cell Rep 18(7–8):533–537

    Article  CAS  Google Scholar 

  • Jayasankar S, Bondada BR, Li Z, Gray D (2003) Comparative anatomy and morphology of Vitis vinifera (Vitaceae) somatic embryos from solid-and liquid-culture-derived proembryogenic masses. Am J Bot 90(7):973–979

    Article  CAS  PubMed  Google Scholar 

  • Karami O, Deljou A, Pour AM (2007) Repetitive somatic embryogenesis in carnation on picloram supplemented media. Plant Growth Regul 51(1):33–39

    Article  CAS  Google Scholar 

  • Kikkert JR, Hébert-Soulé D, Wallace PG, Striem MJ, Reisch BI (1996) Transgenic plantlets of ‘Chancellor’grapevine (Vitis sp.) from biolistic transformation of embryogenic cell suspensions. Plant Cell Rep 15(5):311–316

    Article  CAS  PubMed  Google Scholar 

  • Kikkert JR, Striem MJ, Vidal JR, Wallace PG, Barnard J, Reisch BI (2005) Long-term study of somatic embryogenesis from anthers and ovaries of 12 grapevine (Vitis sp.) genotypes. In Vitro Cell Dev Biol-Plant 41(3):232–239

    Article  Google Scholar 

  • Langcake P, Pryce R (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 9(1):77–86

    Article  CAS  Google Scholar 

  • Li Z, Dhekney S, Dutt M, Van Aman M, Tattersall J, Kelley K, Gray D (2006) Optimizing Agrobacterium-mediated transformation of grapevine. Vitro Cell Dev Biol-Plant 42(3):220–227

    Article  CAS  Google Scholar 

  • Li ZT, Dhekney S, Dutt M, Gray D (2008) An improved protocol for Agrobacterium-mediated transformation of grapevine (Vitis vinifera L.). Plant Cell Tissue Org Cult 93(3):311–321

    Article  Google Scholar 

  • Liu C, Xu Z, Chua N-H (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell Online 5(6):621–630

    Article  CAS  Google Scholar 

  • Martinelli L, Gribaudo I (2001) Somatic embryogenesis in grapevine. In: Molecular Biology & Biotechnology of the Grapevine. Springer, Netherlands, p 327–351

  • Martinelli L, Gribaudo I, Bertoldi D, Candioli E, Poletti V (2001) High efficiency somatic embryogenesis and plant germination in grapevine cultivars Chardonnay and Brachetto a grappolo lungo. Vitis 40(3):111–116

    CAS  Google Scholar 

  • Melchior F, Kindl H (1990) Grapevine stilbene synthase cDNA only slightly differing from chalcone synthase cDNA is expressed in Escherichia coli into a catalytically active enzyme. FEBS Lett 268(1):17–20

    Article  CAS  PubMed  Google Scholar 

  • Mendoza MG, Kaeppler HF (2002) Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.). In Vitro Cell Dev Biol-Plant 38(1):39–45

    Article  CAS  Google Scholar 

  • Morgana C, Di Lorenzo R, Carimi F (2004) Somatic embryogenesis of Vitis vinifera L. (cv. Sugraone) from stigma and style culture. Vitis 43(4):169–173

    CAS  Google Scholar 

  • Mullins M, Srinivasan C (1976) Somatic embryos and plantlets from an ancient clone of the grapevine (cv. Cabernet-Sauvignon) by apomixis in vitro. J Exp Bot 27(5):1022–1030

    Article  Google Scholar 

  • Nakano M, Sakakibara T, Watanabe Y, Mii M (1997) Establishment ofembryogénie cultures in several cultivars of Vitis vinifera and V. xlabruscana. Vitis 36(3):141–145

    Google Scholar 

  • Oláh R, Zok A, Pedryc A, Howard S, Kovács LG (2009) Somatic embryogenesis in a broad spectrum of grape genotypes. Sci Hortic 120(1):134–137

    Article  Google Scholar 

  • Perl A, Saad S, Sahar N, Holland D (1995) Establishment of long-term embryogenic cultures of seedless Vitis vinifera cultivars—a synergistic effect of auxins and the role of abscisic acid. Plant Sci 104(2):193–200

    Article  CAS  Google Scholar 

  • Perrin M, Martin D, Joly D, Demangeat G, This P, Masson J (2001) Medium-dependent response of grapevine somatic embryogenic cells. Plant Sci 161(1):107–116

    Article  CAS  Google Scholar 

  • Perrin M, Gertz C, Masson JE (2004) High efficiency initiation of regenerable embryogenic callus from anther filaments of 19-grapevine genotypes grown worldwide. Plant Sci 167(6):1343–1349

    Article  CAS  Google Scholar 

  • Pezet R, Perret C, Jean-Denis JB, Tabacchi R, Gindro K, Viret O (2003) δ-Viniferin, a resveratrol dehydrodimer: one of the major stilbenes synthesized by stressed grapevine leaves. J Agric Food Chem 51(18):5488–5492

    Article  CAS  PubMed  Google Scholar 

  • Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6(1):27

    Article  PubMed Central  PubMed  Google Scholar 

  • Rupprich N, Kindl H (1978) Stilbene Synthases and Stilbenecarboxylate Synthases, I. Biol Chem 359(1):165–172

    Article  CAS  Google Scholar 

  • Sasaki K, Yamaguchi H, Narumi T, Shikata M, Oshima Y, Nakata M, Mitsuda N, Masaru OT, Ohtsubo N (2011) Utilization of a floral organ-expressing AP1 promoter for generation of new floral traits in Torenia fournieri Lind. Plant Biotech 28(2):181–188

    Article  CAS  Google Scholar 

  • Schnee S, Viret O, Gindro K (2008) Role of stilbenes in the resistance of grapevine to powdery mildew. Physiol Mol Plant Pathol 72(4):128–133

    Article  CAS  Google Scholar 

  • Schröder G, Brown JW, Schröder J (1988) Molecular analysis of resveratrol synthase. Eur J Biochem 172(1):161–169

    Article  PubMed  Google Scholar 

  • Schwanz P, Polle A (2001) Growth under elevated CO2 ameliorates defenses against photo-oxidative stress in poplar (Populus alba x tremula). Environ Exp Bot 45(1):43–53

    Article  PubMed  Google Scholar 

  • Shikata M, Narumi T, Yamaguchi H, Sasaki K, Aida R, Oshima Y, Takiguchi Y, Masaru OT, Mitsuda N, Ohtsubo N (2011) Efficient production of novel floral traits in torenia by collective transformation with chimeric repressors of Arabidopsis transcription factors. Plant Biotech 28(2):189–199

    Article  CAS  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant J 11(6):1187–1194

    Article  CAS  Google Scholar 

  • Torregrosa L, Iocco P, Thomas M (2002) Influence of Agrobacterium strain, culture medium, and cultivar on the transformation efficiency of Vitis vinifera L. Am J Enol Vitic 53(3):183–190

    CAS  Google Scholar 

  • Vidal JR, Kikkert JR, Malnoy MA, Wallace PG, Barnard J, Reisch BI (2006) Evaluation of transgenic ‘Chardonnay’(Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew. Transgenic Res 15(1):69–82

    Article  CAS  PubMed  Google Scholar 

  • Vidal J, Gomez C, Cutanda M, Shrestha B, Bouquet A, Thomas M, Torregrosa L (2010) Use of gene transfer technology for functional studies in grapevine. Aust J Grape Wine Res 16(s1):138–151

    Article  CAS  Google Scholar 

  • Wiese W, Vornam B, Krause E, Kindl H (1994) Structural organization and differential expression of three stilbene synthase genes located on a 13 kb grapevine DNA fragment. Plant Mol Biol 26(2):667–677

    Article  CAS  PubMed  Google Scholar 

  • Xia X-J, Wang Y-J, Zhou Y-H, Tao Y, Mao W-H, Shi K, Asami T, Chen Z, Yu J-Q (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150(2):801–814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao S, Brown S, Patrick E, Brearley C, Turner JG (2003) Enhanced transcription of the Arabidopsis disease resistance genes rpw8. 1 and rpw8. 2 via a salicylic acid–dependent amplification circuit is required for hypersensitive cell death. Plant Cell Online 15(1):33–45

    Article  CAS  Google Scholar 

  • Xu W, Yu Y, Ding J, Hua Z, Wang Y (2010) Characterization of a novel stilbene synthase promoter involved in pathogen-and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta 231(2):475–487

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Yu Y, Zhou Q, Ding J, Dai L, Xie X, Xu Y, Zhang C, Wang Y (2011) Expression pattern, genomic structure, and promoter analysis of the gene encoding stilbene synthase from Chinese wild Vitis pseudoreticulata. J Exp Bot 62(8):2745–2761

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wang J, Shi K, Xia XJ, Zhou YH, Yu JQ (2012) Hydrogen peroxide is involved in the cold acclimation-induced chilling tolerance of tomato plants. Plant Physiol Biochem 60:141–149

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Xia X-J, Zhou Y-H, Shi K, Chen Z, Yu J-Q (2014a) RBOH1-dependent H2O2 production and subsequent activation of MPK1/2 play an important role in acclimation-induced cross-tolerance in tomato. J Exp Bot 65(2):595–607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Q, Dai L, Cheng S, He J, Wang D, Zhang J, Wang Y (2014b) A circulatory system useful both for long-term somatic embryogenesis and genetic transformation in Vitis vinifera L. cv. Thompson Seedless. Plant Cell Tissue Org Cult 118:157–168

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no.31372039) and Program for Innovative Research Team of Grape Germplasm Resource and Breeding (2013KCT-25).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianxia Zhang or Yuejin Wang.

Additional information

Lingmin Dai and Qi Zhou have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Zhou, Q., Li, R. et al. Establishment of a picloram-induced somatic embryogenesis system in Vitis vinifera cv. chardonnay and genetic transformation of a stilbene synthase gene from wild-growing Vitis species. Plant Cell Tiss Organ Cult 121, 397–412 (2015). https://doi.org/10.1007/s11240-015-0711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0711-9

Keywords

Navigation