Skip to main content
Log in

Study of the effects of foliar application of ABA during acclimatization

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

This study aims to elucidate the effects of abscisic acid (ABA) foliar application on plant hardening during ex vitro acclimatization using a forest model species Ulmus minor L. Plant leaves were sprayed with ABA (0, 50 and 100 μM) immediately after ex vitro transfer and twice a week for the first 3 weeks of acclimatization. After this period, parameters related with photosynthesis, hormone levels and oxidative stress were measured to assess plant performance. The results demonstrated that ABA foliar application alleviates the negative shock of ex vitro acclimatization since it reduces the water loss through transpiration, relieving the risk of wilting. Moreover, ABA promoted net CO2 assimilation rate (P N ) and plant dry mater accumulation. ABA treatment increased the antioxidant battery during acclimatization, with more effective results at the concentration of 50 μM ABA. Also, flow cytometry data support that cytosolic compounds, which may increase in response to 50 μM ABA, could also protect DNA from oxidative damage. We propose here that ABA foliar application (immediately after ex vitro transfer), by preventing water loss, enhancing photosynthesis efficiency and the activity of antioxidant enzymes, improves the plants hardening and ability to deal with the ex vitro stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal S, Sairam RK, Scrivastava GC, Meena RC (2005) Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biol Plant 49:541–550

    Article  CAS  Google Scholar 

  • Aguilar ML, Espadas FL, Coello J, Maust BE, Trejo C, Robert ML, Santamaria JM (2000) The role of abscisic acid in controlling leaf water loss, survival and growth of micropropagated Tagetes erecta plants when transferred directly to the field. J Exp Bot 51:1861–1866

    Article  PubMed  CAS  Google Scholar 

  • Amaral da Silva EA, Toorop PE, Van Lammeren AAM, Hilhorst HWM (2008) ABA inhibits embryo cell expansion and early cell division events during coffee (Coffea arabica ‘Rubi’) seed germination. Ann Bot 102:425–433

    Article  CAS  Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Baťková P, Pospíšilová J, Synková H (2008) Production of reactive oxygen species and development of antioxidative systems during in vitro growth and ex vitro transfer. Biol Plant 52:413–442

    Article  Google Scholar 

  • Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Bios 32:501–510

    Article  CAS  Google Scholar 

  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantiation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (2002) Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant, Cell Environ 25:153–161

    Article  CAS  Google Scholar 

  • Brito G, Loureiro J, Lopes T, Santos C (2008) Genetic characterisation of olive trees from Madeira Archipelago using flow cytometry and microsatellite markers. Genet Resour Crop Evol 55(5):657–664

    Article  CAS  Google Scholar 

  • Chaum S, Puthea O, Kirdmanee C (2009) An effective in vitro acclimatization using uniconazole treatments and ex-vitro adaptation of Phalaenopsis orchid. Sci Hort 121:468–473

    Article  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Review: understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Chen THH, Gusta LV (1983) Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol 73:71–75

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Conde P, Loureiro J, Santos C (2004) Somatic embryogenesis and plant regeneration from leaves of Ulmus minor Mill. Plant Cell Rep 22:632–639

    Article  PubMed  CAS  Google Scholar 

  • Conde P, Sousa A, Costa A, Santos C (2008) A protocol for Ulmus minor Mill. micropropagation and acclimatization. Plant Cell Tiss Org Cult 92:113–119

    Article  Google Scholar 

  • de Souza TC, Magalhães PC, Castro EM, Albuquerque PEP, Marabesi MA (2013) The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance. Acta Physiol Plant 35:515–527

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumbdhindsa P, Thorpe TA (1981) Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dias MC, Brüggemann W (2007) Photosynthesis under drought stress in Flaveria species with different degrees of development of the C4 syndrome. Photosynthetica 45:75–84

    Article  Google Scholar 

  • Dias MC, Pinto G, Santos C (2011) Acclimatization of micro propagated plantlets induces an antioxidative burst: a case study with Ulmus minor Mill. Photosynthetica 49:259–266

    Article  Google Scholar 

  • Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2012) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plantarum 35:1281–1289

    Article  CAS  Google Scholar 

  • Dias MC, Pinto G, Correia C, Moutinho-Pereira J, Silva S, Santos C (2013a) Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization. Biol Plantarum 57:33–40

    Article  CAS  Google Scholar 

  • Dias MC, Pinto G, Guerra C, Jesus C, Amaral J, Santos C (2013b) Effect of irradiance during acclimatization on content of proline and phytohormones in micropropagated Ulmus minor. Biol Plantarum 57:769–772

    Google Scholar 

  • Duan B, Yang Y, Lu Y, Korpelainen H, Berninger F, Li C (2007) Interactions between water deficit, ABA and proven nces in Picea asperata. J Exp Bot 58:3025–3036

    Article  PubMed  CAS  Google Scholar 

  • Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez-Cadenas A (2005) Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography electrospray tandem mass spectrometry. J Agr Food Chem 53:8437–8442

    Article  CAS  Google Scholar 

  • Efetova M, Zeier J, Riederer M, Lee CW, Stingl N, Mueller M, Hartung W, Hedrich R, Deeken R (2007) A central role of abscisic acid in drought stress protection of Agrobacterium-induced tumors on Arabidopsis. Plant Physiol 145:853–862

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • FAO (1999) State of the World′s Forests

  • Gichner T, Patkova Z, Szakova J, Demnerova K (2006) Toxicity and DNA damage in tobacco and potato plants growing on soil polluted with heavy metals. Ecotoxicol Environ Saf 65:420–426

    Article  PubMed  CAS  Google Scholar 

  • Gichner T, Patkova Z, Szakova J, Znidar I, Mukherjee A (2008) DNA damage in potato plants induced by cadmium, ethyl methanesulphonate and gamma-rays. Environ Exp Bot 62:113–119

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Guschina IA, Harwood JL, Smith M, Beckett RP (2002) Abscisic acid modifies the changes in lipids brought about by water stress in the moss Atrichum androgynum. New Phyto 156:255–264

    Article  CAS  Google Scholar 

  • Gusta LV, Trischuk R, Weiser CJ (2005) Plant cold acclimation: role of abscisic acid. J Plant Growth Regul 24:308–318

    Article  CAS  Google Scholar 

  • Hall HK, McWha JA (1981) Effects of abscisic acid on growth of wheat (Triticum aestivum L.). Ann Bot 47:427–433

    CAS  Google Scholar 

  • Hamid HA, Khaedr A, Mohammad AA, Amal AA, Paul Quick W, Abogadallah M (2003) Proline induces the expression of salt-stress-responsive proteins and may improve the adoption of Pancratium maritimum L. to salt stress. J Exp Bot 54:2553–2562

    Article  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hort 108:105–120

    Article  CAS  Google Scholar 

  • Lopes T, Pinto G, Loureiro J, Santos C (2006) Determination of genetic stability in long-term somatic embryogenic cultures and derived plantlets of cork oak using microsatellite markers. Tree Physiol 26:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Loureiro J, Capelo A, Brito G, Santos C (2007a) Micropropagation of Juniperus phoenicea from adult plant explants and analysis of ploidy stability using flow cytometry. Biol Plant 51:7–14

    Article  CAS  Google Scholar 

  • Loureiro J, Rodriguez E, Costa A, Santos C (2007b) Nuclear DNA content estimations in wild olive (Olea europaea L. ssp europaea var. sylvestris Brot.) and Portuguese cultivars of O. europaea using flow cytometry. Ann Bot 4:875–888

    Article  Google Scholar 

  • Loureiro J, Rodriguez E, Gomes A, Santos C (2007c) Genome size estimations on Ulmus minor Mill., Ulmus glabra Huds., and Celtis australis L. using flow cytometry. Plant Biol 9:541–544

    Article  PubMed  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants, and stress tolerance. Ternds Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Monteiro MS, Rodriguez E, Loureiro J, Mann RM, Soares AMVM, Santos C (2010) Flow cytometric assessment of Cd genotoxicity in three plants with different metal accumulation and detoxification capacities. Ecot Environ Saf 73:1231–1237

    Article  CAS  Google Scholar 

  • Monteiro C, Santos C, Pinho S, Oliveira H, Pedrosa T, Dias MC (2012) Cadmium-induced cyto- and genotoxicity are organ-dependent in lettuce. Chem Res Toxi 25:1423–1434

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nas MN, Read P (2004) Improved rooting and acclimatization of micropropagated hazelnut shoots. HortScience 39:1688–1690

    Google Scholar 

  • Osório ML, Osório J, Romano A (2010) Chlorophyll fluorescence in micropropagated Rhododendron ponticum subsp. baeticum plants in response to different irradiances. Biol Plant 54:415–422

    Article  CAS  Google Scholar 

  • Osório ML, Gonçalves S, Coelho N, Osório J, Romano A (2013) Morphological, physiological and oxidative stress markers during acclimatization and field transfer of micropropagated Tuberaria major plants. Plant Cell Tiss Organ Cult 115:85–97

    Article  CAS  Google Scholar 

  • Pinto G, Silva S, Loureiro J, Costa A, Dias MC, Araujo C, Neves L, Santos C (2011) Acclimatization of secondary somatic embryos derived plants of Eucalyptus globulus Labill.: an ultrastructural approach. Trees 25:383–392

    Article  Google Scholar 

  • Pospíšilová J, Wilhelmová N, Synková H, Čatský J, Krebs D, Tichá I, Hanáčková B, Snopek J (1998) Acclimation of tobacco plantlets to ex vitro conditions as affected by application of Abscisic acid. J Exp Bot 49:863–869

    Article  Google Scholar 

  • Pospíšilová J, Haisel D, Synková H, Čatský J, Wilhelmová N, Plzáková Š, Procházková D, Šrámek F (2000) Photosynthetic pigments and gas exchange during ex vitro acclimation of tobacco plants as affected by CO2 supply and abscisic acid. Plant Cell Tiss Organ Cult 61:125–133

    Article  Google Scholar 

  • Pospíšilová J, Synková H, Haisel D, Baťková P (2009) Effect of abscisic acid on photosynthetic parameters during ex vitro transfer of micropropagated tobacco plantlets. Biol Plant 53:11–20

    Article  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Rodriguez E, Azevedo R, Fernandes P, Santos C (2011) Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chem Res Toxi 24:1040–1047

    Article  CAS  Google Scholar 

  • Santamaría JM, Davies WJ, Atkinson CJ (1993) Stomata of micropropagated Delphinium plants respond to ABA, CO2, light and water potential, but fail to close fully. J Exp Bot 44:99–107

    Article  Google Scholar 

  • Santos C, Falcao I, Pinto G, Loureiro J (2002) Nutrient responses and glutamate and proline metabolism in sunflower plants and calli under Na2SO4 stress. J Plant Nutr Soil Sci 165:366–372

    Article  CAS  Google Scholar 

  • Sgherri CLM, Loggini B, Puliga S, Navari-Izzo F (1994) Antioxidant system in Sporobolus stapfianus: changes in response to desiccation and rehydration. Phytochemistry 33:561–565

    Article  Google Scholar 

  • Silva S, Pinto G, Correia B, Pinto-Carnide O, Santos C (2013) Rye oxidative stress under long term Al exposure. J Plant Physiol 170:879–889

    Article  PubMed  CAS  Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Rem Sen Environ 81:337–354

    Article  Google Scholar 

  • Swiatek A, Lenjou M, Van Bockstaele D, Inzé D, Van Onckelen H (2002) Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant Physiol 128:201–211

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Synková H, Pospíšilová J (2002) In vitro precultivation of tobacco affects the response of antioxidative enzymes to ex vitro acclimation. J Plant Physiol 159:781–789

    Article  Google Scholar 

  • Ueno O (1998) Induction of Kranz Anatomy and C4-like Biochemical. Characteristics in a submerged amphibious plant by abscisic acid. Plant Cell 10:571–583

    PubMed Central  PubMed  CAS  Google Scholar 

  • Van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photo Res 25:147–150

    Article  Google Scholar 

  • Von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Wang C, Fan X, Wang G, Niu J, Zhou B (2011) Differential expression of rubisco in sporophytes and gametophytes of some marine macroalgae. PLoS ONE 6:e16351

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valona C (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Igarashi E, Mukai M, Hirata K, Miyamoto K (2003) Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid. Plant Cell Environ 26:451–458

    Article  CAS  Google Scholar 

  • Zeevaarl JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Ann Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111–119

    Article  Google Scholar 

  • Zhang KM, Yu HJ, Zhou YH, Yu JQ, Xia XJ (2010) Photoprotective roles of anthocyanins in Begonia semperflorens. Plant Sci 179:202–208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Portuguese Foundation for Science and Technology (FCT) through a post-doctoral fellowship of M. C. Dias (SFRH/BPD/41700/2007) and H. Oliveira (SFRH/BPD/48853/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Dias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, M.C., Correia, C., Moutinho-Pereira, J. et al. Study of the effects of foliar application of ABA during acclimatization. Plant Cell Tiss Organ Cult 117, 213–224 (2014). https://doi.org/10.1007/s11240-014-0434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0434-3

Keywords

Navigation