Skip to main content
Log in

Transgenic expression in citrus of single-chain antibody fragments specific to Citrus tristeza virus confers virus resistance

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Citrus tristeza virus (CTV) causes one of the most destructive viral diseases of citrus worldwide. Generation of resistant citrus genotypes through genetic engineering could be a good alternative to control CTV. To study whether production of single-chain variable fragment (scFv) antibodies in citrus could interfere and immunomodulate CTV infection, transgenic Mexican lime plants expressing two different scFv constructs, separately and simultaneously, were generated. These constructs derived from the well-referenced monoclonal antibodies 3DF1 and 3CA5, specific against CTV p25 major coat protein, whose mixture is able to detect all CTV isolates characterized so far. ScFv accumulation levels were low and could be readily detected just in four transgenic lines. Twelve homogeneous and vigorous lines were propagated and CTV-challenged by graft inoculation with an aggressive CTV strain. A clear protective effect was observed in most transgenic lines, which showed resistance in up to 40–60% of propagations. Besides, both a delay in symptom appearance and attenuation of symptom intensity were observed in infected transgenic plants compared with control plants. This effect was more evident in lines carrying the 3DF1scFv transgene, being probably related to the biological functions of the epitope recognized by this antibody. This is the first report describing successful protection against a pathogen in woody transgenic plants by ectopic expression of scFv recombinant antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bajrovic K, Erdag B, Atalay EO, Cirakoclu B (2001) Full resistance to tobacco mosaic virus infection conferred by the transgenic expression of a recombinant antibody in tobacco. Biotechnol Biotechnol Equip 15:21–27

    CAS  Google Scholar 

  • Ballester-Olmos JF, Pina JA, Carbonell EA, Moreno P, Hermoso de Mendoza A, Cambra M, Navarro L (1993) Biological diversity of Citrus tristeza virus (CTV) isolates in Spain. Plant Pathol 42:219–229

    Article  Google Scholar 

  • Bar-Joseph M, Marcus R, Lee RF (1989) The continuous challenge of Citrus tristeza virus control. Annu Rev Phytopathol 27:291–316

    Article  Google Scholar 

  • Bertolini E, Moreno A, Capote N, Olmos A, de Luis A, Vidal E, Pérez-Panadés J, Cambra M (2008) Quantitative detection of Citrus tristeza virus in plant tissues and single aphids by real-time RT–PCR. Eur J Plant Pathol 120:177–188

    Article  CAS  Google Scholar 

  • Bevan MW, Flavell RB, Chilton M-D (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  • Boonrod KJ, Galetzka D, Nagy PD, Conrad U, Krczal G (2004) Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance. Nature Biotechnol 22:856–862

    Article  CAS  Google Scholar 

  • Bouaziz D, Ayadi M, Bidani A, Rouis S, Nouri-Ellouz O, Jellouli R, Drira N, Gargouri-Bouzid R (2009) A stable cytosolic expression of VH antibody fragment directed against PVY NIa protein in transgenic potato plant confers partial protection against the virus. Plant Sci 176:489–496

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brederode FT, Koperzwarthoff EC, Bol JF (1980) Complete nucleotide-sequence of Alfalfa mosaic virus RNA-4. Nucleic Acids Res 8:2213–2223

    Article  CAS  PubMed  Google Scholar 

  • Cambra M, Garnsey SM, Permar TA, Henderson CT, Gumph D, Vela C (1990) Detection of Citrus tristeza virus (CTV) with a mixture of monoclonal antibodies. Phytopathology 80:S1034

    Google Scholar 

  • Cambra M, Asensio M, Gorris MT, Pérez E, Camarasa E, García JA, Moya JJ, López-Abella D, Vela C, Sanz A (1994) Detection of Plum pox potyvirus using monoclonal antibodies to structural and non-structural proteins. EPPO Bull 24:569–577

    Article  Google Scholar 

  • Chiu WL, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Current Biol 6:325–330

    Article  CAS  Google Scholar 

  • Costa AS, Müller GW (1980) Tristeza control by cross protection: a US-Brazil cooperative success. Plant Dis 64:538–541

    Article  Google Scholar 

  • De Jaeger G, Buys E, Eeckhout D, De Wilde C, Jacobs A, Kapila J, Angenon G, Van Montagu M, Gerats T, Depicker A (1999) High level accumulation of single-chain variable fragments in the cytosol of transgenic Petunia hybrida. Eur J Biochem 259:426–434

    Article  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 4:19–21

    Article  Google Scholar 

  • Domínguez A, Guerri J, Cambra M, Navarro L, Moreno P, Peña L (2000) Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 19:427–433

    Article  Google Scholar 

  • Domínguez A, Fagoaga C, Navarro L, Moreno P, Peña L (2002a) Constitutive expression of untranslatable versions of the p25 coat protein gene in Mexican lime (Citrus aurantifolia (Christm.) Swing.) transgenic plants does not confer resistance to Citrus tristeza virus (CTV). In: Durán-Vila N, Milne RG, da Graça JV (eds) Proceedings of the XV conference of the international organization of citrus virologists, University of California, Riverside, USA, pp 341–344. http://www.ivia.es/iocv/

  • Domínguez A, de Mendoza AH, Guerri J, Cambra M, Navarro L, Moreno P, Peña L (2002b) Pathogen-derived resistance to Citrus tristeza virus (CTV) in transgenic Mexican lime (Citrus aurantifolia (Christ.) Swing.) plants expressing its p25 coat protein gene. Mol Breed 10:1–10

    Article  Google Scholar 

  • EPPO (2004) Citrus tristeza closterovirus. Diagnostic protocols for regulated pests. European and Mediterranean Plant Protection Organization. Bulletin OEPP/EPPO bulletin 34: 239–246. http://www.eppo.org/QUARANTINE/virus/Citrus_tristeza/pm7-31(1)%20CTV000%20web.pdf

  • Esteban O, García JA, Gorris MT, Domínguez E, Cambra M (2003) Generation and characterisation of functional recombinant antibody fragments against RNA replicase NIb from Plum pox virus. Biochem Biophys Res Commun 301:167–175

    Article  CAS  PubMed  Google Scholar 

  • Fagoaga C, López C, de Mendoza AH, Moreno P, Navarro L, Flores R, Peña L (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol 60:153–165

    Article  CAS  PubMed  Google Scholar 

  • Fecker LE, Kaufmann A, Commandeur U, Commandeur J, Köenig R, Burgermeister W (1996) Expression of single-chain antibody fragments (scFv) specific for Beet necrotic yellow vein virus coat protein or 25 kDa protein in Escherichia coli and Nicotiana benthamiana. Plant Mol Biol 32:979–986

    Article  CAS  PubMed  Google Scholar 

  • Fecker LF, Köenig R, Obermeier C (1997) Nicotiana benthamiana plants expressing beet necrotic yellow vein virus (BNYVV) coat protein-specific scFv are partially protected against the establishment of the virus in the early stages of infection and its pathogenic effects in the late stages of infection. Arch Virol 142:1857–1863

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Emans N, Schillberg S (2001) Achieving plant disease resistance by antibody expression. Can J Plant Pathol 23:236–245

    Article  CAS  Google Scholar 

  • Folimonov A, Folimonova S, Bar-Joseph M, Dawson WO (2007) A stable RNA-virus based vector for citrus trees. Virology 368:205–216

    Article  CAS  PubMed  Google Scholar 

  • Galeffi P, Giunta G, Guida S, Cantale C (2002) Engineering of a single variable fragment antibody specific for the Citrus tristeza virus and its expression in Escherichia coli and Nicotiana tabacum. Eur J Plant Pathol 108:479–483

    Article  CAS  Google Scholar 

  • Gargouri-Bouzid R, Jaoua L, Rouis S, Saidi MN, Bouaziz D, Ellouz R (2006) PVY-resistant transgenic potato plants expressing an anti-NIa protein scFv antibody. Mol Biotechnol 33:133–140

    Article  CAS  PubMed  Google Scholar 

  • Garnsey SM, Cambra M (1991) Enzyme-linked immunosorbent assay (ELISA) for citrus pathogens. In: Roistacher CN (ed) Graft-transmisible diseases of citrus: handbook for detection and diagnosis. Food and Agriculture Organization of the United Nations-FAO, Rome, pp 193–216

    Google Scholar 

  • Ghorbel R, Juárez J, Navarro L, Peña L (1999) Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theor App Genet 99:350–358

    Article  Google Scholar 

  • Guilley H, Dudley RK, Jonard G, Balazs E, Richards KE (1982) Transcription of Cauliflower mosaic virus DNA - detection of promoter sequences, and characterization of transcripts. Cell 30:763–773

    Article  CAS  PubMed  Google Scholar 

  • Hilf ME, Karasev AV, Pappu HR, Gumpf DJ, Niblett CL, Garnsey SM (1995) Characterization of citrus tristeza virus subgenomic RNAs in infected tissue. Virology 208:576–582

    Article  CAS  PubMed  Google Scholar 

  • Karasev AV, Boyko VP, Gowda S, Nikolaeva OV, Hilf ME, Koonin EV, Niblett CL, Cline K, Gumpf DJ, Lee RF, Garnsey SM, Lewandowski DJ, Dawson WO (1995) Complete sequence of the Citrus tristeza virus-RNA genome. Virology 208:511–520

    Article  CAS  PubMed  Google Scholar 

  • Kerschbaumer RJ, Himmler G (1999) Dedicated expression vectors for the production of diagnostic reagents. In: Harper K, Ziegler A (eds) Recombinant antibodies-application in plant science and plant pathology. Taylor & Francis, London, pp 57–81

    Google Scholar 

  • Kollerová E, Glasa M, Šubr ZW (2008) Western blotting analysis of the Plum pox virus capsid protein. J Plant Pathol 90(1 Suppl):S119–S122

    Google Scholar 

  • Krueger RR, Navarro L (2007) Citrus germplasm resources. In: Khan IA (ed) Citrus genetics, breeding and biotechnology. USDA-ARS National Clonal Germplasm Repository for Citrus & Dates, Riverside, CA, pp 45–140

    Chapter  Google Scholar 

  • Lu R, Folimonov A, Shintaku M, Li WX, Falk BW, Dawson WO, Ding SW (2004) Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Nat Acad Sci USA 101:15742–15747

    Article  CAS  PubMed  Google Scholar 

  • Moreno P, Ambrós S, Albiach-Martí MR, Guerri J, Peña L (2008) Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9:251–268

    Article  CAS  PubMed  Google Scholar 

  • Nickel H, Kawchuk L, Twyman RM, Zimmermann S, Junghans H, Winter S, Fischer R, Prufer D (2008) Plantibody-mediated inhibition of the Potato leafroll virus P1 protein reduces virus accumulation. Virus Res 136:140–145

    Article  CAS  PubMed  Google Scholar 

  • Nölke G, Cobanov P, Uhde-Holzem K, Reustle G, Fischer R, Schillberg S (2009) Grapevine fanleaf virus (GFLV)-specific antibodies confer GFLV and Arabis mosaic virus (ArMV) resistance in Nicotiana benthamiana. Mol Plant Pathol 10:41–49

    Article  PubMed  Google Scholar 

  • Owen M, Gandecha A, Cockburn B, Whitelam G (1992) Synthesis of a functional antiphytochrome single-chain-Fv protein in transgenic tobacco. Biotechnology 10:790–794

    Article  CAS  PubMed  Google Scholar 

  • Pappu HR, Pappu SS, Kano T, Koizumi M, Cambra M, Moreno P, Su HJ, Garnsey SM, Lee RF, Niblett CL (1995) Mutagenic analysis and localization of a highly conserved epitope near the amino-terminal end of the citrus tristeza closterovirus capsid protein. Phytopathology 85:1311–1315

    Article  CAS  Google Scholar 

  • Peña L, Cervera M, Juárez J, Navarro A, Pina JA, Navarro L (1997) Genetic transformation of lime (Citrus aurantifolia Swing.): factors affecting transformation and regeneration. Plant Cell Rep 16:731–737

    Article  Google Scholar 

  • Prins M, Lohuis D, Schots A, Goldbach R (2005) Phage display-selected single-chain antibodies confer high levels of resistance against Tomato spotted wilt virus. J Gen Virol 86:2107–2113

    Article  CAS  PubMed  Google Scholar 

  • Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    CAS  PubMed  Google Scholar 

  • Roistacher CN (1991) Techniques for biological detection of specific citrus graft-transmissible diseases. In: Roistacher CN (ed) Graft-transmissible diseases of citrus. Handbook for detection and diagnosis. Food and Agriculture Organisation of the United Nations-FAO, Rome, pp 13–156

    Google Scholar 

  • Satyanarayana T, Gowda S, Mawassi M, Albiach-Marti MR, Ayllón MA, Robertson C, Garnsey SM, Dawson WO (2000) Closterovirus encoded HSP70 homolog and p61 in addition to both coat proteins function in efficient virion assembly. Virology 278:253–265

    Article  CAS  PubMed  Google Scholar 

  • Schillberg S, Zimmermann S, Findlay K, Fischer R (2000) Plasma membrane display of anti-viral single chain Fv fragments confers resistance to tobacco mosaic virus. Mol Breed 6:317–326

    Article  CAS  Google Scholar 

  • Tavladoraki P, Benvenuto E, Trinca S, Demartinis D, Cattaneo A, Galeffi P (1993) Transgenic plants expressing a functional single-chain Fv-antibody are specifically protected from virus attack. Nature 366:469–472

    Article  CAS  PubMed  Google Scholar 

  • Terrada E, Kerschbaumer RJ, Giunta G, Galeffi P, Himmler G, Cambra M (2000) Fully “Recombinant enzyme-linked immunosorbent assays” using genetically engineered single-chain antibody fusion proteins for detection of Citrus tristeza virus. Phytopathology 90:1337–1344

    Article  CAS  PubMed  Google Scholar 

  • Vela C, Cambra M, Cortés E, Moreno P, Miguet JG, Pérez de San Román C, Sanz A (1986) Production and characterization of monoclonal antibodies specific for Citrus tristeza virus and their use for diagnosis. J Gen Virol 67:91–96

    Article  Google Scholar 

  • Villani ME, Roggero P, Bitti O, Benvenuto E, Franconi R (2005) Immunomodulation of cucumber mosaic virus infection by intrabodies selected in vitro from a stable single-framework phage display library. Plant Mol Biol 58:305–316

    Article  CAS  PubMed  Google Scholar 

  • Voss A, Niersbach M, Hain R, Hj Hirsch, Yc Liao, Kreuzaler F, Fischer R (1995) Reduced virus infectivity in Nicotiana tabacum secreting a TMV-specific full-size antibody. Mol Breed 1:39–50

    Article  CAS  Google Scholar 

  • Xiao XW, Chu PWG, Frenkel MJ, Tabe LM, Shukla DD, Hanna PJ, Higgins TJV, Muller WJ, Ward CW (2000) Antibody-mediated improved resistance to ClYVV and PVY infections in transgenic tobacco plants expressing a single-chain variable region antibody. Mol Breed 6:421–431

    Article  CAS  Google Scholar 

  • Zhang MY, Zimmermann S, Fischer R, Schillberg S (2008) Generation and evaluation of movement protein-specific single-chain antibodies for delaying symptoms of Tomato spotted wilt virus infection in tobacco. Plant Pathol 57:854–860

    Article  CAS  Google Scholar 

  • Zimmermann S, Schillberg S, Liao YC, Fisher R (1998) Intracellular expression of TMV-specific single-chain Fv fragments leads to improved virus resistance in Nicotiana tabacum. Mol Breed 4:369–379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank J.A. Pina and J. Piquer for their technical assistance in growing citrus plants in greenhouses, and P. Serra for his help with western blot analysis. This research was supported by grants Prometeo/2008/121 from the Generalitat Valenciana and AGL2009-08052, RTA2005-00190 and AGL2009-07531 from the Ministerio de Ciencia e Innovación. M. Cervera is recipient of a “Ramón y Cajal” contract. O. Esteban and M. Gil were recipients of PhD fellowships from IVIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Cambra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cervera, M., Esteban, O., Gil, M. et al. Transgenic expression in citrus of single-chain antibody fragments specific to Citrus tristeza virus confers virus resistance. Transgenic Res 19, 1001–1015 (2010). https://doi.org/10.1007/s11248-010-9378-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-010-9378-5

Keywords

Navigation