Skip to main content
Log in

Phylogenetic relationships and expression in response to low temperature of a catalase gene in banana (Musa acuminata cv. “Grand Nain”) fruit

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

For many plants, particularly those of tropical and subtropical origin, chilling injury occurs as a result of their exposure to low, but nonfreezing temperatures. Banana fruits are highly susceptible to chilling injury, but little is known about the role of genes that scavenge reactive oxygen species in fruits during chilling injury. In this study, a catalase gene, designated MaCat2, was isolated from Musa acuminata cv. Grand Nain fruits. The full-length cDNA sequence is 1,479 bp, and based on phylogenetic analysis, it is related to catalase type 2 genes from Elaeis guineensis and Zantedeschia aethiopica. Expression studies revealed that the MaCat2 gene was induced in severe stress of banana fruits. MaCat2 expression in banana peel increased in response to both low temperature and physical damage, but not so under heat stress or during normal fruit ripening. These findings suggest that MaCat2 is induced in banana peel by cold treatment and is regulated at transcriptional level, possibly playing a role in chilling injury response of banana fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Beyer WF Jr, Fridovich I (1987) Catalase with and without heme. In: Simic MG, Taylor KA, Ward JF, Von Sonntag C (eds) Oxygen radicals in biology and medicine. Plenum Press, New York, pp 651–661

    Google Scholar 

  • Caamal-Velázquez JH, Chi-Manzanero BH, Canche-Yam JJ, Castaño E, Rodríguez-Zapata LC (2007) Low temperature induce differential expression genes in banana fruits. Sci Hortic 114:83–89

    Article  Google Scholar 

  • Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalase. Cell Mol Life Sci 61:192–208

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    Article  PubMed  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  PubMed  CAS  Google Scholar 

  • Drum H, Schopfer P (1974) Effect of phytochrome in development of catalase activity and isoenzyme pattern in mustard (sinapis alba L.) seedlings. A reinvestigation. Planta 120:13–30

    Article  Google Scholar 

  • Esaka M, Yamada N, Kitabayashi M, Setoguchi Y, Totsugeki R (1997) cDNA cloning and differential gene expression of three catalases in pumpkin. Plant Mol Biol 33:141–155

    Article  PubMed  CAS  Google Scholar 

  • Frugoli JA, Zhong HH, Nuccion ML, McCourt P, McPeek MA, Thomas TL, McClung CR (1996) Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol 112:327–336

    Article  PubMed  CAS  Google Scholar 

  • Frugoli JA, McPeek MA, Thomas TL, McClung CR (1998) Intron loss and gain during evolution of the catalase gene family in angiosperms. Genetics 149:355–365

    PubMed  CAS  Google Scholar 

  • Gawel N, Jarret RL (1991) Cytoplasmic genetic diversity in bananas and plantains. Euphytica 52:19–23

    Google Scholar 

  • Gish W, States DJ (1993) Identification of protein coding regions by database similarity search. Nat Genet 3:266–272

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez E (1991) The C-terminal domain of plant catalases: implications for a glyoxysomal targeting sequence. Eur J Biochem 199:211–215

    Article  PubMed  CAS  Google Scholar 

  • Guan LM, Scandalios JG (1996) Molecular evolution of maize catalases and their relationship to other eukaryotic and prokaryotic catalases. J Mol Evol 42:570–579

    Article  PubMed  CAS  Google Scholar 

  • Guan LM, Scandalios JG (2000) Hydrogen peroxide-mediated catalase gene expression in response to wounding. Free Radic Biol Med 28:1182–1190

    Article  PubMed  CAS  Google Scholar 

  • Jin Z-Q, Xu B-Y, Liu J-H, Su W, Zhang J-B, Yang X-L, Jia C-H, Lia M-Y (2009) Identification of genes differentially expressed at the onset of the ethylene climacteric in banana. Postharvest Biol Technol 52:307–309

    Article  CAS  Google Scholar 

  • Kamigaki A, Mano S, Terauchi K, Nishi Y, Tachibe-Kinoshita Y, Nito K, Kondo M, Hayashi M, Nishimura M, Esaka M (2003) Identification of peroxisomal targeting signal of pumpkin cabalase and the binding análisis with PTS1 receptor. Plant J 33:161–175

    Article  PubMed  CAS  Google Scholar 

  • Kim MH, Lee S (1988) Effects of storage temperatures on mature green bananas. J Korean Soc Hort Sci 29:64–70

    Google Scholar 

  • Klotz MG, Loewen PC (2003) The molecular evolution of catalatic hydroperoxidases: evidence for multiple lateral transfer of genes between prokaryota and from bacteria into eukaryota. Mol Biol Evol 20:1098–1112

    Article  PubMed  CAS  Google Scholar 

  • Klotz MG, Klassen GR, Loewen PC (1997) Phylogenetic relationships among prokaryotic and eukaryotic catalases. Mol Biol Evol 14:951–958

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, An CS (2005) Differential expression of three catalase genes in hot pepper (Capsicum annuum L.). Mol Cells 20:247–255

    PubMed  CAS  Google Scholar 

  • Lino-Neto T, Piques MC, Barbeta C, Sousa MF, Tavares RM, Pais MS (2004) Identification of Zantedeschia aethiopica Cat1 and Cat2 catalase genes and their expression analysis during spathe senescence and regreenin. Plant Sci 167:889–898

    Article  CAS  Google Scholar 

  • Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S, Foyer CH (2005) Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot 56:417–423

    Article  PubMed  CAS  Google Scholar 

  • Mayfield JE, Duvall MR (1996) Anomalous phylogenies based on bacterial catalase gene sequence. J Mol Evol 42:469–471

    Article  PubMed  CAS  Google Scholar 

  • McClung CR (1997) Regulation of catalases in Arabidopsis. Free Radic Biol Med 23:489–496

    Article  PubMed  CAS  Google Scholar 

  • Medina-Escobar N, Cárdenas J, Valpuesta V, Muñoz-Blanco J, Caballero JL (1997) Cloning and characterization of cDNA from genes differentially expressed during the strawberry fruit ripening process by a MAST-PCR-SBDS method. Anal Biochem 248:288–296

    Article  PubMed  CAS  Google Scholar 

  • Mullen RT, Lee MS, Trelease RN (1997) Identification of the peroxisomal targeting signal for cottonseed catalase. Plant J 12:313–322

    Article  PubMed  CAS  Google Scholar 

  • Omran RG (1980) Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiol 65:407–408

    Article  PubMed  CAS  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks and pathway of cross tolerance to stress. The central role of “redox” and abscisic-acid-mediated controls. Plant Physiol 129:460–468

    Article  PubMed  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative estress in Maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sakajo S, Nakamura FK, Tadashi A (1987) Increase in catalase mRNA in wounded sweet potato tuberous root tissue. Plant Cell Physiol 28:919–924

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Scandalios JG, Guan L, Polidoros AN (1997) Catalase in plants. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidants defense. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 343–406

    Google Scholar 

  • Soitamo AJ, Piippo M, Allahverdiyeva Y, Battchikova N, Aro E-M (2008) Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol 8:13

    Article  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Volk S, Feierabend J (1989) Photoinactivation of catalase at low temperature and its relevance to photosynthetic and peroxide metabolism in leaves. Plant Cell Environ 12:701–712

    Article  CAS  Google Scholar 

  • Willekens H, Langebartels C, Tiré C, Van Montagu M, Inzé D, Van Camp W (1994a) Differential expression of catalasa genes in Nicotiana plumbaginifolia (L.) Proc Natl Acad Sci USA 91:10450–10454

    Google Scholar 

  • Willekens H, Villaroel R, Van Montagu M, Inzé D, Camp W (1994b) Molecular identification of catalase from Nicotiana plumbagnifolia (L.). FEBS Lett 352:79–83

    Article  PubMed  CAS  Google Scholar 

  • Williamson JD, Scandalios JG (1992) Differential response of maize catalases to abscisic acid: Vpl transcriptional activator is not required for abscisic acid-regulated Catl expression. Proc Natl Acad Sci USA 89:8842–8846

    Article  PubMed  CAS  Google Scholar 

  • Williamson JD, Scandalios JG (1993) Response of the maize catalases and superoxide dismutases to cercosporin-containing fungal extracts: the pattern of catalase response in scutella is stage specific. Physiol Plant 88:159–166

    Article  CAS  Google Scholar 

  • Yi S, Yu S, Choi D (2003) Involvement of hydrogen peroxide in repression of catalase in TMV-infected resistant tobacco. Mol Cells 15:364–369

    PubMed  CAS  Google Scholar 

  • Zhang Q, Zhang JZ, Chow WS, Sun LL, Chen JW, Chen YJ, Peng CL (2011) The influence of low temperature on photosynthesis and antioxidant enzymes in sensitive banana and tolerant plantain (Musa sp.) cultivars. Photosynthetica 49:201–208

    Article  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge support for the present work provided by CONACYT (SAGARPA-C01-2002-1714; Ciencia Básica SEP-CONACYT 59097) and the International Foundation for Science (C/3959-1). We are thankful to Fernando Contreras for his agronomic technical support, and to Bartolome Chí for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Rodríguez-Zapata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueroa-Yáñez, L., Cano-Sosa, J., Castaño, E. et al. Phylogenetic relationships and expression in response to low temperature of a catalase gene in banana (Musa acuminata cv. “Grand Nain”) fruit. Plant Cell Tiss Organ Cult 109, 429–438 (2012). https://doi.org/10.1007/s11240-011-0107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-0107-4

Keywords

Navigation