Skip to main content
Log in

Enhanced tolerance of transgenic grapevines expressing chitinase and β-1,3-glucanase genes to downy mildew

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An Agrobacterium-mediated transformation protocol for grapevine cv. Crimson Seedless using sonication and anti-necrotic agents has been optimized, and transgenic lines carrying wheat chitinase and β-1,3-glucanase genes have exhibited enhanced tolerance to downy mildew incited by Plasmopara viticola. cDNA clones encoding chitinase and β-1,3-glucanase have been isolated from a cDNA library, constructed from scab-infected Sumai-3 wheat, and introduced into a plant cloning vector to generate the plasmids pCAMBAR.chi.11 and pCAMBAR.638. Embryogenic cultures, established from in vitro-derived leaves, of Crimson Seedless were used as explants for Agrobacterium tumefaciens-mediated transformation studies. Sonication of somatic embryos in a bacterial suspension of A. tumefaciens and incorporation of anti-necrotic agents in the co-cultivation medium significantly enhanced transformation efficiency. Transformation efficiency of embryos with either chitinase or β-1,3-glucanase gene was highest when embryos were suspended in a bacterial cell suspension at 0.5 OD600 and sonicated for 2 or 3 s at 60 kHz. Transformation efficiency with chitinase was highest on incorporation of 2 or 3 mg l−1 phenylalanine, 1 or 2 mg l−1 silver nitrate or 400 mg l−1 l-cysteine in co-cultivation medium while incorporation of 20 mg l−1 sodium thiosulphate produced highest transformation efficiency with β-1,3-glucanase. Confirmed transgenic grapevine lines harboring anti-fungal genes exhibited higher levels of chitinase and β-1,3-glucanase transcripts as well as enzymatic activities. Moreover, transgenic lines showed enhanced tolerance to P. viticola infection following detached leaf assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akiyama T, Kaku H, Shibuya N (1998) Purification, characterization and NH2-terminal sequencing of an endo-(1-3,1-4)-β-glucanase from rice (Oryza sativa L.). Plant Sci 134:3–10

    Article  CAS  Google Scholar 

  • Armstrong CL, Rout JR (2001) A novel Agrobacterium-mediated plant transformation method. Int Patent Publ WOO1/09302 A2

  • Baribault TJ, Skene KGM, Cain PA, Scott NS (1990) Transgenic grapevines: regeneration of shoots expressing beta-glucuronidase. J Exp Bot 41:1045–1049

    Article  CAS  Google Scholar 

  • Beyer EM (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58:268–271

    Article  PubMed  CAS  Google Scholar 

  • Bornhoff BA, Harst M, Zyprian E, Topfer R (2005) Transgenic plants of Vitis vinifera cv. Seyval blanc. Plant Cell Rep 24:433–438

    Article  PubMed  CAS  Google Scholar 

  • Brown MV, Moore JN, Fenn P, McNew RW (1999) Evaluation of grape germplasm for downy mildew resistance. Fruit Var J 53:22–29

    Google Scholar 

  • Chhikara S, Chaudhury D, Dhankher OP, Jaiwal PK (2012) Combined expression of a barley class II chitinase and type I ribosome inactivating protein in transgenic Brassica juncea provides protection against Alternaria brassicae. Plant Cell Tissue Organ Cult 108:83–89

    Article  CAS  Google Scholar 

  • Christou P (1996) Electric discharge particle acceleration (Accell®) technology for the creation of transgenic plants with altered characteristics. Field Crops Res 45:143–151

    Article  Google Scholar 

  • Coutos-Thevenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter. J Exp Bot 52:901–910

    Article  PubMed  CAS  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42

    Article  Google Scholar 

  • Dutt M, Vasconcellos M, Grosser JW (2011) Effects of antioxidants on Agrobacterium-mediated transformation and accelerated production of transgenic plants of Mexican lime (Citrus aurantifolia Swingle). Plant Cell Tissue Organ Cult 107:79–89

    Article  CAS  Google Scholar 

  • Enriquez-Obregon GA, Prieto-Sansonov DL, de la Riva GA, Perez M, Selman-Housein G, Vazquez-Padron RI (1999) Agrobacterium-mediated Japonica rice transformation: procedure assisted by an anti-necrotic treatment. Plant Cell Tissue Organ Cult 59:159–168

    Article  CAS  Google Scholar 

  • Frame BR, Shou H, Chikwamba R, Zhang Z, Xiang C, Fonger T, Pegg SE, Li B, Nettleton D, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  PubMed  CAS  Google Scholar 

  • Ganesan M, Bhanumathi P, Ganesh Kumari K, Lakshmi Prabha A, Song P-S, Jayabalan N (2009) Transgenic Indian cotton (Gossypium hirsutum) harboring rice chitinase gene (Chi II) confers resistance to two fungal pathogens. Am J Biochem Biotechnol 5:63–74

    Article  CAS  Google Scholar 

  • Giannakis C, Bucheli CS, Skene KGM, Robinson SP, Steele SN (1998) Chitinase and B-l,3-glucanase in grapevine leaves: a possible defense against powdery mildew infection. Aust J Grape Wine Res 4:14–22

    Article  CAS  Google Scholar 

  • Gustavo AR, Gonzalez-Cabrera J, Vazquez-Padron R, Ayra-Pardo C (1998) Agrobacterium tumefaciens: a natural tool for plant transformation. Electron J Biotechnol 1:1–15

    Google Scholar 

  • Harborne JB (1988) The flavonoids: advances in research. Chapman & Hall, London

    Google Scholar 

  • Heath MC (2000) Non-host resistance and nonspecific plant defenses. Curr Opin Plant Biol 3:315–319

    Article  PubMed  CAS  Google Scholar 

  • Imota T, Yagishita L (1971) A simple activity measurement of lysozyme. Agric Biol Chem 35:1154–1156

    Article  Google Scholar 

  • Iocco P, Franks T, Thomas MR (2001) Genetic transformation of major wine grape cultivars of Vitis vinifera L. Transgenic Res 10:105–112

    Article  PubMed  CAS  Google Scholar 

  • Kikkert JK, Ali GS, Wallace PG, Reustle GM, Reisch B (2000) Expression of fungal chitinase in Vitis vinifera L. ‘Merlot’ and ‘Chardonnay’ plants produced by biolistic transformation. Acta Hortic 528:297–303

    CAS  Google Scholar 

  • Kumar V, Sharma A, Prasad BCN, Gururaj HB, Ravishankar GA (2006) Agrobacterium rhizogenes-mediated genetic transformation resulting in hairy root formation is enhanced by ultrasonication and acetosyringone treatment. Electron J Biotechnol 9:349–357

    Google Scholar 

  • Kwapata K, Sabzikar R, Sticklen MB, Kelly JD (2010) In vitro regeneration and morphogenesis studies in common bean. Plant Cell Tissue Organ Cult 100:97–105

    Article  CAS  Google Scholar 

  • Li WL, Faris JD, Muthukrishnan S, Liu DJ, Chen PD, Gill BS (2001) Isolation and characterization of novel cDNA clones of acidic chitinases and β‐1,3‐glucanases from wheat spikes infected with Fusarium graminearium. Theor Appl Genet 102:353–362

    Article  CAS  Google Scholar 

  • Li JT, Dhenkey SA, Dutt M, van Aman M, Tattersaki J, Kelley KT (2006) Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell Dev Biol Plant 42:220–227

    Article  CAS  Google Scholar 

  • Li JT, Dhekney SA, Dutt M, Gray DJ (2008) An improved protocol for Agrobacterium-mediated transformation of grapevine. Plant Cell Tissue Organ Cult 93:311–321

    Article  Google Scholar 

  • Llyod G, McCown B (1981) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int Plant Prop Soc Proc 30:421–427

    Google Scholar 

  • Lodhi MA, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • Lopez-Perez AJ, Velasco L, Pazos-Navarro M, Dabauza M (2008) Development of highly efficient genetic transformation protocols for table grape Sugraone and Crimson Seedless at low Agrobacterium density. Plant Cell Tissue Organ Cult 94:189–199

    Article  CAS  Google Scholar 

  • Lorence A, Chevone BI, Mendes P, Nessler CL (2004) myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

    Article  PubMed  CAS  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenol oxidases in plants. Phytochem 18:193–215

    Article  CAS  Google Scholar 

  • Mehdy MC (1994) Active oxygen species in plant defense against pathogens. Plant Physiol 105:467–472

    PubMed  CAS  Google Scholar 

  • Mondal KK, Bhattacharya RC, Koundal KR, Chatterjee SC (2007) Transgenic Indian mustard (Brassica juncea) expressing tomato glucanase leads to arrested growth of Alternaria brassicae. Plant Cell Rep 26:247–252

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Negishi O, Ozawa T (2000) Inhibition of enzymatic browning and protection of sulfhydryl enzymes by thiol compounds. Phytochem 54:481–487

    Article  CAS  Google Scholar 

  • Nirala NK, Das DK, Srivatsava PS, Sopory SK, Upadhyaya KC (2010) Expression of a rice chitinase gene enhances antifungal potential in transgenic grapevine (Vitis vinifera L.). Vitis 49(4):181–187

    CAS  Google Scholar 

  • Nishizawa Y, Saruta M, Nakazono K, Nishio Z, Soma M, Yoshida T, Nakajima E, Hibi T (2003) Characterization of transgenic rice plants over-expressing the stress-inducible β-glucanase gene Gns1. Plant Mol Biol 51:143–152

    Article  PubMed  CAS  Google Scholar 

  • Nookaraju A, Barreto MS, Agrawal DC (2008) Rapid in vitro propagation of grapevine cv. Crimson Seedless—influence of basal media and plant growth regulators. J Appl Hort 10:44–49

    Google Scholar 

  • Olhoft PM, Somers DA (2001) l-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20:706–711

    Article  CAS  Google Scholar 

  • Olhoft PM, Lin K, Galbraith J, Nielsen NC, Somers DA (2001) The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep 20:731–737

    Article  CAS  Google Scholar 

  • Olhoft PM, Flagel LE, Donovon CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735

    PubMed  CAS  Google Scholar 

  • Parimalan R, Giridhar P, Ravishankar GA (2011) Enhanced shoot organogenesis in Bixa orellana L. in the presence of putrescine and silver nitrate. Plant Cell Tissue Organ Cult 105:285–290

    Article  CAS  Google Scholar 

  • Paz MM, Shou H, Guo Z, Zhang Z, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179

    Google Scholar 

  • Perl O, Lotan O, Abu-Abied M, Holland D (1996) Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): the role of antioxidants during grape-Agrobacterium interactions. Nat Biotechnol 14:624–628

    Article  PubMed  CAS  Google Scholar 

  • Richard-Forget FC, Goupy PM, Nicolas JJ (1992) Cysteine as an inhibitor of enzymatic browning. 2. Kinetic studies. J Agric Food Chem 40:2108–2113

    Article  CAS  Google Scholar 

  • Sakihama Y, Mano J, Sano S, Asada K, Yamasaki H (2000) Reduction of phenoxyl radicals mediated by monodehydroascorbate reductase. Biochem Biophys Res Commun 279:949–954

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Santarem ER, Trick HN, Essig JS, Finer JJ (1998) Sonication assisted Agrobacterium mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep 17:752–759

    Article  CAS  Google Scholar 

  • Vamos-Vigyazo L (1981) Polyphenol oxidase and peroxidase in fruits and vegetables. CRC Crit Rev Food Sci Nutr 15:49–127

    Article  CAS  Google Scholar 

  • Vishnevetsky J, White TL Jr, Palmateer AJ, Flaishman M, Cohen Y, Elad Y, Velcheva M, Hanania U, Sahar N, Dgani O, Perl A (2011) Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Res 20:61–72

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646

    Article  CAS  Google Scholar 

  • Zhao Z-Y, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333

    Article  CAS  Google Scholar 

  • Zhu Q, Maher EA, Masoud S, Dixon RA, Lamb CJ (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technol 12:807–812

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support in the form of Senior Research Fellowship (SRF) by the Council of Scientific and Industrial Research (CSIR), Govt. of India to Nookaraju and supply of chitinase and glucanase vectors by Dr. Muthukrishnan Subbarat, Professor in Biochemistry, Kansas State University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh C. Agrawal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nookaraju, A., Agrawal, D.C. Enhanced tolerance of transgenic grapevines expressing chitinase and β-1,3-glucanase genes to downy mildew. Plant Cell Tiss Organ Cult 111, 15–28 (2012). https://doi.org/10.1007/s11240-012-0166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0166-1

Keywords

Navigation