Skip to main content
Log in

Development of highly efficient genetic transformation protocols for table grape Sugraone and Crimson Seedless at low Agrobacterium density

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Highly efficient genetic transformation protocols and the regeneration of transgenic plants of Sugraone and Crimson Seedless grapevines (Vitis vinifera L.) were achieved from embryogenic calli co-cultured with low Agrobacterium tumefaciens densities. The sensitivity of embryogenic cultures to kanamycin, as well as the effect of Agrobacterium strains, C58(pMP90) or EHA105, and the bacterial concentration (0.06 or 0.2 at Optical Density OD600) on transformation efficiency were studied. Embryogenic cultures showed different kanamycin sensitivities and the total suppression of embryo differentiation at 20 and 50 mg/l kanamycin for Crimson Seedless and Sugraone, respectively. sgfp gene expression was evaluated in callus co-cultured with each bacterial strain. Although GFP transient expression was higher with A. tumefaciens EHA105 in both cultivars at the beginning of the culture, there were no significant differences 28 days post-inoculation. However, the concentration of Agrobacterium did affected transformation efficiency: 0.06 OD600 being more effective for the transformation of Crimson Seedless and 0.2 OD600 for Sugraone. By following the optimised procedure, 21 and 26 independent transgenic plants were generated from Sugraone and Crimson Seedless respectively, three to five months post-infection. PCR analyses were carried out to verify the integration of the sgfp and nptII genes into grapevine genome and the stable integration of the sgfp gene was confirmed by Southern blot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2,4-D:

2, 4-Diclorophenoxiacetic acid

BA:

6-Benzyladenine

IAA:

Indol-3-acetic acid

sgfp :

Green fluorescent protein gene

nptII :

Neomycine phosphotransferase II gene

PCR:

Polymerase chain reaction

NOSpro/ter:

Nopaline synthase promoter and terminator

35Spro:

35S Cauliflower mosaic virus promoter

OD:

Optical density

References

  • Agüero CB, Meredith CP, Dandekar AM (2006) Genetic transformation of Vitis vinifera L. cvs Thompson Seedless and Chardonnay with the pear PGIP and GFP encoding genes. Vitis 45(1):1–8

    Google Scholar 

  • Ahmed HMH, Digiaro M, Martelli GP (2004) Viruses and virus diseases of grapevine in Egypt. EPPO Bull 34:395–398

    Article  Google Scholar 

  • Avenant JH, Avenant E (2006) The effect of ethephon on berry colour of Crimson Seedless and Ebony Star table grapes. Acta Hortic 727:381–388

    CAS  Google Scholar 

  • Baldoni L, Rugini E (2002) Genetic modification of agronomic traits in fruit crops. In: Valpuesta V (ed) Fruit and vegetable biotechnology. Woodhead Publishing Ltd., Cambridge, England, pp 23–113

    Google Scholar 

  • Baribault TJ, Skene KGM, Scott NS (1989) Genetic transformation of grapevine cells. Plant Cell Rep 8:137–140

    Article  CAS  Google Scholar 

  • Berres R, Otten L, Tinland B, Malgarini-Clog E, Walter B (1992) Transformation of Vitis tissue by different strains of Agrobacterium tumefaciens containing the T-6B gene. Plant Cell Rep 11:192–195

    Article  CAS  Google Scholar 

  • Bornhoff BA, Harst M, Zyprian E, Töpfer R (2005) Transgenic plants of Vitis vinifera cv. Seyval blanc. Plant Cell Rep 24:433–438

    Article  PubMed  CAS  Google Scholar 

  • Chiu W, Niwa Y, Zeng W, Hirano T (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  PubMed  CAS  Google Scholar 

  • Colby SM, Meredith CP (1990) Kanamycin sensitivity of cultured tissues of Vitis. Plant Cell Rep 9:237–240

    Article  CAS  Google Scholar 

  • Digiaro M, Fiore N, Tarricone L, Prodan S, Elbeaino T (2006) Influence of viruses on the performance and quality of cv. Crimson seedless. 15th Meeting of the International Council for the Study of Virus and Virus-like Diseases of the Grapevine (ICVG Conf), Stellenbosch, South Africa, pp. 186–188

  • Dokoozlian N, Peacock B (2001) Gibberellic acid applied at bloom reduces fruit set and improves size of ‘Crimson Seedless’ table grapes. HortScience 36:706–709

    CAS  Google Scholar 

  • Fan C, Pu N, Wang X, Wang Y, Fang L, Xu W, Zhang J (2008) Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tiss Organ Cult 92:197–206

    Article  CAS  Google Scholar 

  • Ghorbel R, Juárez J, Navarro L, Peña L (1999) Green fluorescent protein as a screenable marker to increase the efficiency of generating woody fruit plants. Theor Appl Genet 99:350–358

    Article  Google Scholar 

  • Gölles R, da Câmara-Machado A, Tsolova V, Bouquet A, Moser R, Lopes MS, Mendonca D, Katinger H, Laimer da Câmara-Machado M (1997) Transformation of somatic embryos of Vitis sp. (grapevine) with different constructs containing nucleotide sequences from nepovirus coat protein genes. Acta Hortic 447:265–272

    Google Scholar 

  • Harst M, Bornhoff BA, Zyprian E, Töpfer R (2000) Influence of culture technique and genotype on the efficiency of Agrobacterium-mediated transformation of somatic embryos (Vitis vinifera) and their conversion to transgenic plants. Vitis 39:99–102

    Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Iocco P, Franks P, Thomas MR (2001) Genetic transformation in mayor wine grape cultivars of Vitis vinifera L. Transgenic Res 10:105–112

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  PubMed  CAS  Google Scholar 

  • Kikkert JR, Thomas MR, Reisch BI (2001) Grapevine genetic engineering. In: Roubelakis-Angelakis KA (ed) Molecular biology & biotechnology of the grapevine. Kluwer Academic Publishers, The Netherlands, pp 393–410

    Google Scholar 

  • Koncz C, Schell J (1986) The promotor of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Legrand V, Dalmayrac S, Latché A, Pech JC, Bouzayen M, Fallot J, Torregrosa L, Bouquet A, Roustan JP (2003) Constitutive expression of Vir-ERE gene in transformed grapevines confers enhanced resistance to eutypine, a toxin from Eutypa lata. Plant Sci 164:809–814

    Article  CAS  Google Scholar 

  • Li ZT, Dhekney S, Dutt M, Van Aman M, Tattersali J, Kelley KT, Gray DJ (2006) Optimazing Agrobacterium-mediated transformation of grapevine. In Vitro Cell Dev Biol Plant 42:220–227

    Article  CAS  Google Scholar 

  • Lodhi MA, Ye G-N, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars, Vitis species and Ampelopsis. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • López-Pérez AJ (2006) Desarrollo de protocolos de regeneración de plantas vía embriogénesis somática y de transformación de vid (Vitis vinifera L.). PhD Thesis. Universidad de Murcia. Spain

  • López-Pérez AJ, Carreño J, Dabauza M (2006) Somatic embryo germination and plant regeneration of three grapevine cvs: Effect of IAA, GA3 and embryo morphology. Vitis 45:141–143

    Google Scholar 

  • López-Pérez AJ, Carreño J, Martinez-Cutillas A, Dabauza M (2005) High embryogenic ability and plant regeneration of table grapevine cultivars (Vitis vinifera L.) induced by activated charcoal. Vitis 44:79–85

    Google Scholar 

  • Martinelli L (1997) Regeneration and genetic transformation in the Vitis Genus. Ph. D. thesis for the award of the degree of Doctor of Agricultural and Enviromental Sciencies at the Agricultural University of Wageningen, The Netherlands

  • Martinelli L, Mandolino G (1994) Genetic transformation and regeneration of transgenic plants in grapevine (Vitis rupestris S.). Theor Appl Genet 88:621–628

    Article  Google Scholar 

  • Martinelli L, Mandolino G (2001) Transgenic grapes (Vitis species). In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry 47: 325–338 Springer-Verlag, Berlin

  • Mozsár J, Viczián O, Süle S (1998) Agrobacterium-mediated genetic transformation of an interspecific grapevine. Vitis 37:127–130

    Google Scholar 

  • Nakajima I, Matsuta N, Yamamoto T, Terakami S, Soejima J (2006) Genetic transformation of ‘Kyoho’ grape with a GFP gene. J Jpn Soc Hortic Sci 75(2):188–190

    Article  CAS  Google Scholar 

  • Oláh R, Szegedi E, Ruthner S, Korbuly J (2003a) Optimization of conditions for regeneration and genetic transformation of rootstock- and scion grape varieties. Acta Hortic 603:491–497

    Google Scholar 

  • Oláh R, Szegedi E, Ruthner S, Korbuly J (2003b) Thidiazuron-induced regeneration and genetic transformation of grapevine rootstock varieties. Vitis 42:133–136

    Google Scholar 

  • Perl A, Lotan O, Abu-Abied M, Holland D (1996) Establishment of an Agrobacterium-mediated trasnforamtion system for grape (Vitis vinifera L.): The role of antioxidants during grape-Agrobacterium interactions. Nat Biotechnol 14:624–628

    Article  PubMed  CAS  Google Scholar 

  • Prodan S, Montealegre J, Aballay E, Pino AM, Fernández P, Reyes R, Fiore N (2003) Report of new viral diseases in Chilean grapevines. 14th meeting of the international council for the study of virus and virus-like diseases of the grapevine (ICVG Conf), Locorotondo, p 145

  • Spielmann A, Krastanova S, Douet-Orhant V, Gugerli P (2000) Analisys of transgenic grapevine (Vitis rupestris) and Nicotiana benthamiana plants expressing an Arabis mosaic virus coat protein gene. Plant Sci 156:235–244

    Article  PubMed  CAS  Google Scholar 

  • Torregrosa L, Péros JP, Lopez G, Bouquet A (2000) Effect of hygromycin, kanamycin and phosphinothricin on the embryogenic callus development and axillary micropropagation of Vitis vinifera L. Acta Hortic 528:401–406

    CAS  Google Scholar 

  • Torregrosa L, Iocco P, Thomas MR (2002) Influence of Agrobacterium strain, culture medium, and cultivar on the transformation efficiency of Vitis vinifera L. Am J Enol Vitic 53:183–190

    CAS  Google Scholar 

  • Vidal JR, Kikkert JR, Wallace PG, Reisch BI (2003) High-efficiency biolistic co-transformation and plant regeneration of ‘Chardonnay’ (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes. Plant Cell Rep 22:252–260

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Li P, Hanania U, Sahar N, Mawassi M, Gafny R, Sela I, Tanne E, Perl A (2005) Improvement of Agrobacterium-mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimising selection regimens and utilizing cryopreserved cell suspensions. Plant Sci 168:565–571

    Article  CAS  Google Scholar 

  • Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. L. Peña for providing the C58(pMP90) and EHA105 Agrobacterium strains and to Dr. J.R. Vidal for the critical reading of the manuscript. This research was supported by the Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (PR06-002) and by a fellowship provided by Fundación Séneca to A.J. López-Pérez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Dabauza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Pérez, AJ., Velasco, L., Pazos-Navarro, M. et al. Development of highly efficient genetic transformation protocols for table grape Sugraone and Crimson Seedless at low Agrobacterium density. Plant Cell Tiss Organ Cult 94, 189–199 (2008). https://doi.org/10.1007/s11240-008-9404-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-008-9404-y

Keywords

Navigation