Skip to main content
Log in

Origin, Evolution, and Metabolic Role of a Novel Glycolytic GAPDH Enzyme Recruited by Land Plant Plastids

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

NAD-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a cytosolic marker enzyme of eukaryotes (GapC; EC 1.2.1.12). Land plants possess an additional NADP+-dependent enzyme (EC 1.2.1.13) within their chloroplasts which is composed of two subunits, GapA and GapB. Another plastid GAPDH enzyme (GapCp) was recently discovered in gymnosperms and ferns. This novel GapCp is closely related to cytosolic GapC and displays glycolytic NAD+ cosubstrate specificity. Here we show that this new gene GapCp is also present and actively expressed in angiosperms, mosses, and liverworts. Phylogenetic analyses of the available GapC and GapCp sequences suggest that the gene duplication giving rise to GapCp occurred in ancestral charophyte algae. The data are also consistent with a monophyletic origin of charophytes and land plants and further support the view that land plants arose from a Coleochaete-like green alga. Northern hybridizations were employed to study the expression of the genes GapCp, GapC, GapA, and GapB in green and nongreen tissues from pepper (Capsicum annuum). The results demonstrate that GapCp mRNAs are mainly expressed in red pepper fruit and roots, in which the transcript levels of photosynthetic GapA and GapB are downregulated. This suggests that in flowering plants GapCp plays a specific role in glycolytic energy production of nongreen plastids such as chromoplasts and leukoplasts and that angiosperms may be the only land plants where glycolysis is absent in green chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J Adachi M Hasegawa (1996) ArticleTitleMOLPHY version 2.3: Programs for molecular phylogenetics based on maximum likelihood. Comp Sci Monogr 28 1–150

    Google Scholar 

  2. InstitutionalAuthorNameThe Arabidopsis Genome Initiative (2000) ArticleTitleAnalysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408 796–815 Occurrence Handle11130711

    PubMed  Google Scholar 

  3. JE Backhausen S Vetter E Baalmann C Kitzmann R Scheibe (1998) ArticleTitleNAD-dependent malate dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase isoenzyme play an important role in dark metabolism of various plastid types. Planta 205 359–366 Occurrence Handle10.1007/s004250050331 Occurrence Handle1:CAS:528:DyaK1cXjvVKrs70%3D

    Article  CAS  Google Scholar 

  4. H Brinkmann R Cerff M Salomon J Soll (1989) ArticleTitleCloning and sequence analysis of cDNAs encoding the cytosolic precursors of subunits GapA and GapB of chloroplast glyceraldehyde-3-phosphate dehydrogenase from pea and spinach. Plant Mol Biol 13 81–94 Occurrence Handle1:CAS:528:DyaL1MXlvVymu74%3D Occurrence Handle2562762

    CAS  PubMed  Google Scholar 

  5. B Camara P Hugueney F Bouvier M Kuntz R Moneger (1995) ArticleTitleBiochemistry and molecular biology of chromoplast development. Int Rev Cytol 163 175–247

    Google Scholar 

  6. I Capesius (1995) ArticleTitleA molecular phylogeny of bryophytes based on the nuclear encoded 18S rRNA genes. J Plant Phys 146 59–63 Occurrence Handle1:CAS:528:DyaK2MXmslKiurw%3D

    CAS  Google Scholar 

  7. R Cerff (1978) ArticleTitleGlyceraldehyde-3-phosphate dehydrogenase (NADP) from Sinapis alba. Steady state kinetics. Phytochemistry 17 2061–2067 Occurrence Handle10.1016/S0031-9422(00)89281-X Occurrence Handle1:CAS:528:DyaE1MXktFGrsLY%3D

    Article  CAS  Google Scholar 

  8. R Cerff (1982) Separation and purification of NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenases from higher plants. M Edelman RB Hallick N-H Chua (Eds) Methods in chloroplast molecular biology. Elsevier Biomedical Press Amsterdam 683–694

    Google Scholar 

  9. R Cerff (1995) The chimeric nature of nuclear genomes and the antiquity of introns as demonstrated by the GAPDH gene system. M Gõ P Schimmel (Eds) Tracing biological evolution in protein and gene structures. Elsevier Biomedical Press Amsterdam 205–227

    Google Scholar 

  10. R Cerff SE Chambers (1979) ArticleTitleSubunit structure of higher plant glyceraldehyde-3-phosphate dehydrogenases (EC 1.2.1.12 and EC 1.2.1.13). J Biol Chem 254 6094–6098 Occurrence Handle1:CAS:528:DyaE1MXltVCntbw%3D Occurrence Handle109446

    CAS  PubMed  Google Scholar 

  11. R Cerff K Kloppstech (1982) ArticleTitleStructural diversity and differential light control of mRNAs coding for angiosperm glyceraldehyde-3-phosphate dehydrogenases. Proc Natl Acad Sci USA 79 7624–7628 Occurrence Handle1:CAS:528:DyaL3sXkvFGgsQ%3D%3D

    CAS  Google Scholar 

  12. J Devereux P Haeberli O Smithies (1984) ArticleTitleA comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12 387–395 Occurrence Handle6546423

    PubMed  Google Scholar 

  13. J Felsenstein (1985) ArticleTitleConfidence limits on phylogenies: An approach using the bootstrap. Evolution 40 783–791

    Google Scholar 

  14. RM Figge M Schubert H Brinkmann R Cerff (1999) ArticleTitleGlyceraldehyde-3-phosphate dehydrogenase gene diversity in eubacteria and eukaryotes: Evidence for intra- and interkingdom gene transfer. Mol Biol Evol 16 429–440 Occurrence Handle1:CAS:528:DyaK1MXislShsr8%3D Occurrence Handle10331270

    CAS  PubMed  Google Scholar 

  15. UI Flügge (1998) ArticleTitleMetabolic transporters in plastids. Curr Opin Plant Biol l7 201–206 Occurrence Handle10.1016/S1369-5266(98)80105-2

    Article  Google Scholar 

  16. LE Graham (1984) ArticleTitle Coleochaete and the origin of land plants. Am J Bot 71 603–608

    Google Scholar 

  17. LE Graham (1993) Origin of land plants. J. Wiley & Sons New York

    Google Scholar 

  18. LE Graham CF Delwiche BD Mishler (1991) ArticleTitlePhylogenetic connections between the ‘green algae’ and the ‘bryophytes’. Adv Bryol 4 213–244 Occurrence Handle1:STN:280:ByuD28bls10%3D Occurrence Handle8248973

    CAS  PubMed  Google Scholar 

  19. K Henze A Badr M Wettern R Cerff W Martin (1995) ArticleTitleA nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution. Proc Natl Acad Sci USA 92 9122–9126 Occurrence Handle1:CAS:528:DyaK2MXosVWlsbo%3D Occurrence Handle7568085

    CAS  PubMed  Google Scholar 

  20. R Hiesel B Combettes A Brennicke (1994) ArticleTitleEvidence for RNA editing in mitochondria of all major groups of land plants except the Bryophyta. Proc Natl Acad Sci USA 91 629–633 Occurrence Handle1:CAS:528:DyaK2cXhsF2jsb4%3D Occurrence Handle8290575

    CAS  PubMed  Google Scholar 

  21. JP Huelsenbeck F Ronquist (2001) ArticleTitleMrBayes: Baysian inference of phylogenetic trees. Bioinformatics 17 754–755 Occurrence Handle10.1093/bioinformatics/17.8.754 Occurrence Handle1:STN:280:DC%2BD3MvotV2isw%3D%3D Occurrence Handle11524383

    Article  CAS  PubMed  Google Scholar 

  22. KG Karol RM McCourt MT Cimino CF Delwiche (2001) ArticleTitleThe closest living relatives of land plants. Science 294 2351–2353 Occurrence Handle10.1126/science.1065156 Occurrence Handle1:CAS:528:DC%2BD3MXptFGrt78%3D Occurrence Handle11743201

    Article  CAS  PubMed  Google Scholar 

  23. P Kenrick PR Crane (1997) ArticleTitleThe origin and early evolution of plants on land. Nature 389 33–39 Occurrence Handle10.1038/37918 Occurrence Handle1:CAS:528:DyaK2sXlvVClt7w%3D

    Article  CAS  Google Scholar 

  24. R Kersanach H Brinkmann MF Liaud DX Zhang W Martin R Cerff (1994) ArticleTitleFive identical intron positions in ancient duplicated genes of eubacterial origin. Nature 367 387–389 Occurrence Handle10.1038/367387a0 Occurrence Handle1:CAS:528:DyaK2cXitV2ks78%3D Occurrence Handle8114942

    Article  CAS  PubMed  Google Scholar 

  25. H Kishino M Hasegawa (1989) ArticleTitleEvaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 29 170–179 Occurrence Handle1:CAS:528:DyaL1MXkvFCnsbc%3D Occurrence Handle2509717

    CAS  PubMed  Google Scholar 

  26. HD Kranz D Miks ML Siegler I Capesius CW Sensen VA Huss (1995) ArticleTitleThe origin of land plants: phylogenetic relationships among charophytes, bryophytes, and vascular plants inferred from complete small-subunit ribosomal RNA gene sequences. J Mol Evol 41 74–84 Occurrence Handle1:CAS:528:DyaK2MXmt1yktro%3D Occurrence Handle7608991

    CAS  PubMed  Google Scholar 

  27. S Kumar K Tamura M Nei (1994) ArticleTitleMEGA: Molecular Evolutionary Genetics Analysis software for microcomputers. Comput Appl Biosci 10 189–191 Occurrence Handle1:CAS:528:DyaK2cXltVOmsb0%3D Occurrence Handle8019868

    CAS  PubMed  Google Scholar 

  28. HB Kwon SC Park HP Peng HM Goodman J Dewdney MC Shih (1995) ArticleTitleIdentification of a light-responsive region of the nuclear gene encoding the B subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase from Arabidopsis thaliana. Plant Physiol 105 357–367 Occurrence Handle10.1104/pp.105.1.357

    Article  Google Scholar 

  29. M Long R Cerff (2003) Intron movements. Encyclopedia of the human genome (NPG reference). Nature Publishing Group, Macmillan New York

    Google Scholar 

  30. M Long SJ de Souza C Rosenberg W Gilbert (1996) ArticleTitleExon shuffling and the origin of the mitochondrial targeting function in plant cytochrome c1 precursor. Proc Natl Acad Sci USA 93 7727–7731 Occurrence Handle10.1073/pnas.93.15.7727 Occurrence Handle1:CAS:528:DyaK28XksFSrsbc%3D Occurrence Handle8755543

    Article  CAS  PubMed  Google Scholar 

  31. JR Manhart JD Palmer (1990) ArticleTitleThe gain of two chloroplast tRNA introns marks the green algal ancestors of land plants. Nature 345 268–270 Occurrence Handle1:CAS:528:DyaK3MXhsVWg Occurrence Handle2333097

    CAS  PubMed  Google Scholar 

  32. P Martinez W Martin R Cerff (1989) ArticleTitleStructure, evolution and anaerobic regulation of a nuclear gene encoding cytosolic glyceraldehyde-3-phosphate dehydrogenase from maize. J Mol Biol 208 551–565 Occurrence Handle1:CAS:528:DyaL1MXls1ynu70%3D Occurrence Handle2810356

    CAS  PubMed  Google Scholar 

  33. RM McCourt KG Karol M Guerlesquin M Feist (1996) ArticleTitlePhylogeny of extant genera in the family Characeae (Charales, Charophyceae) based on rbcL sequences and morphology. Am J Bot 83 125–131

    Google Scholar 

  34. G Meyer-Gauen C Schnarrenberger R Cerff W Martin (1994) ArticleTitleMolecular characterization of a novel, nuclear-encoded, NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase in plastids of the gymnosperm Pinus sylvestris L. Plant Mol Biol 26 1155–1166 Occurrence Handle1:CAS:528:DyaK2MXjtVWrtrs%3D Occurrence Handle7811973

    CAS  PubMed  Google Scholar 

  35. G Meyer-Gauen H Herbrand J Pahnke R Cerff W Martin (1998) ArticleTitleGene structure, expression in Escherichia coli and biochemical properties of the NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Pinus sylvestris chloroplasts. Gene 209 167–174 Occurrence Handle10.1016/S0378-1119(98)00034-1 Occurrence Handle1:CAS:528:DyaK1cXitVSnsLo%3D Occurrence Handle9583948

    Article  CAS  PubMed  Google Scholar 

  36. BD Mishler LA Lewis MA Buchheim KS Renzaglia DJ Garbary CF Delwiche FW Zechman TS Kantz RL Chapman (1994) ArticleTitlePhylogenetic relationships of the “green algae” and “bryophytes. Ann MO Bot Garden 81 451–483

    Google Scholar 

  37. SC Park HB Kwon MC Shih (1996) ArticleTitleCis-acting elements essential for light regulation of the nuclear gene encoding the A subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase in Arabidopsis thaliana. Plant Physiol 112 1563–1571 Occurrence Handle10.1104/pp.112.4.1563 Occurrence Handle1:CAS:528:DyaK2sXltFWr Occurrence Handle8972600

    Article  CAS  PubMed  Google Scholar 

  38. H Philippe (1993) ArticleTitleMUST, a computer package of management utilities for sequences and trees. Nucleic Acids Res 21 5264–5272 Occurrence Handle1:CAS:528:DyaK2cXnt1yguw%3D%3D Occurrence Handle8255784

    CAS  PubMed  Google Scholar 

  39. YL Qiu JD Palmer (1999) ArticleTitlePhylogeny of early land plants: insights from genes and genomes. Trends Plant Sci 4 26–30 Occurrence Handle10.1016/S1360-1385(98)01361-2 Occurrence Handle10234267

    Article  PubMed  Google Scholar 

  40. YL Qiu Y Cho JC Cox JD Palmer (1998) ArticleTitleThe gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394 671–674 Occurrence Handle1:CAS:528:DyaK1cXlsFKmsLY%3D Occurrence Handle9716129

    CAS  PubMed  Google Scholar 

  41. DA Russell MM Sachs (1989) ArticleTitleDifferential expression and sequence analysis of the maize glyceraldehyde-3-phosphate dehydrogenase gene family. Plant Cell 1 793–803 Occurrence Handle1:CAS:528:DyaL1MXls1ynurY%3D Occurrence Handle2535522

    CAS  PubMed  Google Scholar 

  42. DA Russell MM Sachs (1991) ArticleTitleThe maize cytosolic glyceraldehyde-3-phosphate dehydrogenase gene family: Organ-specific expression and genetic analysis. Mol Gen Genet 229 219–228 Occurrence Handle1:CAS:528:DyaK3MXmslahu78%3D Occurrence Handle1717817

    CAS  PubMed  Google Scholar 

  43. J Sambrook EF Fritsch T Maniatis (1989) Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Habor Laboratory Press Cold Spring Habor, NY

    Google Scholar 

  44. R Scheibe E Baalmann JE Backhausen C Rak S Vetter (1996) ArticleTitleC-Terminal truncation of spinach chloroplast NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase prevents inactivation and reaggregation. Biochim Biophys Acta 1296 228–234 Occurrence Handle10.1016/0167-4838(96)00074-X Occurrence Handle1:CAS:528:DyaK28Xlt1Grurk%3D Occurrence Handle8814230

    Article  CAS  PubMed  Google Scholar 

  45. UG Schlösser (1994) ArticleTitleSAG-Sammlung von Algenkulturen at the University of Göttingen. Catalogue of Strains 1994. Bot Acta 107 113–186

    Google Scholar 

  46. ZS Schwarz-Sommer N Shepherd E Tacke A Gierl W Rohde L Leclerc M Mattes R Berndtgen PA Petersen H Saedler (1987) ArticleTitleInfluence of transposable elements on the structure and function of the A1 gene of Zea mays. EMBO J 6 287–294 Occurrence Handle1:CAS:528:DyaL2sXktVWktL0%3D

    CAS  Google Scholar 

  47. H Shimodaira M Hasegawa (1999) ArticleTitleMultiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16 1114–1116 Occurrence Handle1:CAS:528:DyaK1MXltVyksrg%3D

    CAS  Google Scholar 

  48. K Strimmer A von Haeseler (1996) ArticleTitleQuartet puzzling: A quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13 964–969 Occurrence Handle1:CAS:528:DyaK28XltlSmsLk%3D

    CAS  Google Scholar 

  49. DL Swofford (1999) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates Sunderland, MA

    Google Scholar 

  50. JD Thompson TJ Gibson F Plewniak F Jeanmougin DG Higgins (1997) ArticleTitleThe ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24 4876–4882 Occurrence Handle10.1093/nar/25.24.4876

    Article  Google Scholar 

  51. N Wedel J Soll (1998) ArticleTitleEvolutionary conserved light regulation of Calvin cycle activity by NADPH-mediated reversible phosphoribulokinase/CP12/glyceraldehyde-3-phosphate dehydrogenase complex dissociation. Proc Natl Acad Sci USA 95 9699–9704 Occurrence Handle10.1073/pnas.95.16.9699 Occurrence Handle1:CAS:528:DyaK1cXltlClt7o%3D Occurrence Handle9689144

    Article  CAS  PubMed  Google Scholar 

  52. S Whelan N Goldman (2001) ArticleTitleA general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18 691–699 Occurrence Handle1:CAS:528:DC%2BD3MXjtFyktr4%3D Occurrence Handle11319253

    CAS  PubMed  Google Scholar 

  53. Y Yang HB Kwon HP Peng MC Shih (1993) ArticleTitleStress responses and metabolic regulation of glyceraldehyde-3-phosphate dehydrogenase genes in Arabidopsis. Plant Physiol 101 209–216 Occurrence Handle1:CAS:528:DyaK3sXpvVWmsQ%3D%3D Occurrence Handle8278495

    CAS  PubMed  Google Scholar 

  54. Z Yang (1997) ArticleTitlePAML: A program package for phylogenetic analysis by maximum likelihood. Cabios 13 555–556 Occurrence Handle1:CAS:528:DyaK2sXntlGnu7s%3D Occurrence Handle9367129

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank William Martin (Düsseldorf) for the cDNA library from Physcomitrella patens, Steph Seufert (DSMZ, Braunschweig) for the sterile culture from Marchantia polymorpha, and Walter Wimmer (Salzgitter) for provision and identification Chara vulgaris and Sphagnum cuspidatum. Major financial support, including a Ph.D. stipend for J.P., was received from the Deutsche Forschungsgemeinschaft (priority program “The Molecular Basis of Plant Evolution”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Cerff.

Additional information

The nucleotide sequence data will appear in the DDBJ/EMBL/GenBank International Nucleotide Sequence Database under the following accession numbers. PCR clones: AJ246008, AJ246009, AJ246010, AJ246011, and AJ246012 (GapA1, GapA2, GapB, GapC1, and GapC2 of Capsicum annuum); AJ246021 and AJ246022 (GapC and GapCp of Sphagnum cuspidatum); AJ246019 (GapC of Coleochaete scutata); AJ246015 and AJ246016 (GapC1 and GapC2 of Chara vulgaris); AJ246020 (GapC of Klebsormidium flaccidum). cDNA clones: AJ246013, AJ246024, and AJ246025 (GapCp of Capsicum annuum, Marchantia polymorpha, and Physcomitrella patens); AJ236023 (GapC of Marchantia polymorpha). Genomic clones: AJ272042 and AJ272043 (GapCp of Capsicum annuum).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, J., Brinkmann, H. & Cerff, R. Origin, Evolution, and Metabolic Role of a Novel Glycolytic GAPDH Enzyme Recruited by Land Plant Plastids . J Mol Evol 57, 16–26 (2003). https://doi.org/10.1007/s00239-002-2441-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-002-2441-y

Keywords

Navigation