Skip to main content
Log in

Effect of NaCl and CaCl2 on the antioxidant mechanism of leaves and stems of the rootstock CAB-6P (Prunus cerasus L.) under in vitro conditions

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

The effect of salinity on the non-enzymic and enzymic antioxidant activity, shoot proliferation and nutrient accumulation was studied in in vitro cultures of the rootstock CAB-6P (Prunus cerasus L.). Three concentrations (0, 30 and 60 mM) of NaCl or CaCl2 were added to a modified MS medium. Between the two salt treatments used, only the explants treated with CaCl2 presented significant decrease in growth parameters. The concentrations of Na+ and Cl in the explants treated with NaCl were increased, as NaCl in the culture medium increased. Furthermore, in the explants treated with CaCl2 the concentrations of Ca2+ and Cl were increased while that of K+ decreased, as CaCl2 concentration increased. The activity of peroxidase in leaves as well as the number of its anionic isoforms was increased under 30 mM CaCl2 as well as 60 mM NaCl or CaCl2. On the contrary, increasing salinity, from 0 to 60 mM CaCl2, resulted in a reduction of the catalase activity in leaves followed by disappearance of the only one catalase isoform that was detected in leaves (60 mM CaCl2). In the stems of the explants treated with NaCl the peroxidase activity was reduced. In the stems and leaves of the explants grown in saline substrate the non-enzymic antioxidant activity was significantly increased. The results suggest that the stems and leaves of CAB-6P explants presented variable antioxidant responses that were depended on the salt form used. The contribution of enzymic and non-enzymic protection mechanisms to the adaptation of CAB-6P explants under salinity stress is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BA:

6-benzylaminopurine

CAT:

Catalase

DMAB:

3-dimethylamino benzoic acid

FRAP:

Ferric reducing antioxidant power

IBA:

Indolebutyric acid

MBTH:

3-methyl-2-benzothiazoline hydrazone hydrochloride monohydrate

MS:

Murashige Skoog

POD:

Peroxidase

PVPP:

Polyvinylpolypyrrolidone

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TPTZ:

2,4,6- tripyridyl-s-triazine

References

  • Benzie IF, Strain J (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Anal Biochem 239:70–76. doi:10.1006/abio.1996.0292

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviation detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530. doi:10.1002/jpln.200420485

    Article  CAS  Google Scholar 

  • del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Barroso JB (2003) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55:71–81. doi:10.1080/1521654031000094694

    Article  PubMed  CAS  Google Scholar 

  • Dimassi-Theriou K (1998) Response of increasing rates of NaCl and CaCl2 and proline on ‘Mr.S 2/5’ (Prunus cerasifera) peach rootstock cultured in vitro. Adv Hortic Sci 12:169–174

    Google Scholar 

  • Erturk U, Sivritepe N, Yerlikaya C, Bor M, Ozdemir F, Turkan I (2007) Responses of the cherry rootstock to salinity in vitro. Biol Plant 51:597–600. doi:10.1007/s10535-007-0132-7

    Article  CAS  Google Scholar 

  • Feierabend J, Dehne S (1996) Fate of the porphyrin cofactors during the light-dependent turnover of catalase and of the Photosystem II reaction-center protein D1 in mature rye leaves. Planta 198:413–422. doi:10.1007/BF00620058

    Article  CAS  Google Scholar 

  • Feierabend J, Schaan C, Hertwig B (1992) Photoinactivation of catalase occurs under both high- and low-temperature stress conditions and accompanies photoinhibition of photosystem II. Plant Physiol 100:1554–1561

    Article  PubMed  CAS  Google Scholar 

  • Fornazier RF, Ferreira RR, Vitoria AP, Nolina SMG, Lea PJ, Azevedo RA (2002) Effect of cadmium on antioxidant enzyme activities in sugar cane. Biol Plant 45:91–97. doi:10.1023/A:1015100624229

    Article  CAS  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity—Mineral nutrient relations in horticultural crops. Sci Hortic (Amsterdam) 78:127–157. doi:10.1016/S0304-4238(98)00192-7

    Article  CAS  Google Scholar 

  • Kotuby-Amacher J, Koening R, Kitchen B (2000) Salinity and plant tolerance. Electronic Publication AG-SO-03, Utah State University Extension, Logan.

  • Kuo JM, Yeh DB, Pan BS (1999) Rapid photometric assay evaluating antioxidative activity in edible plant material. J Agric Food Chem 47:3206–3209. doi:10.1021/jf981351o

    Article  PubMed  CAS  Google Scholar 

  • Kwon T, Abe T, Sasahara T (1995) Enhanced saline stress resistance in threonine and methionine overproducing mutant cell line from protoplast culture of rice (Oryza sativa L.). J Plant Physiol 145:551–556

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol 158:737–745. doi:10.1078/0176-1617-00174

    Google Scholar 

  • Liu T, Van Staden J (2001) Growth rate, water relations and ion accumulation of soybean callus lines differing in salinity tolerance under salinity stress and its subsequent relief. Plant Growth Regul 34:277–285. doi:10.1023/A:1013324300320

    Article  CAS  Google Scholar 

  • Lu W, Jia JF (1996) Changes of some isozymes in salt-tolerant cell line of setaria Italia and the effects of external ABA on them. Acta Bot Borreal- Occid Sin 16:337–344

    Google Scholar 

  • Misra N, Gupta AK (2006) Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. J Plant Physiol 163:11–18. doi:10.1016/j.jplph.2005.02.011

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assay with tobacco tissue culture. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Ngo TT, Lenhoff HM (1980) A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal Biochem 105:389–397. doi:10.1016/0003-2697(80)90475-3

    Article  PubMed  CAS  Google Scholar 

  • Niknam V, Razavi N, Ebrahimzadeh H, Sharifizahed B (2006) Effect of NaCl on biomass, protein and proline contents, and antioxidant enzymes in seedlings and calli of two Trigonella species. Biol Plant 50:591–596. doi:10.1007/s10535-006-0093-2

    Article  CAS  Google Scholar 

  • Papadakis IE, Veneti G, Chatzissavvidis C, Sotiropoulos TE, Dimassi KN, Therios IN (2007) Growth, mineral composition, leaf chlorophyll and water relationships of two cherry varieties under NaCl-induced salinity stress. Soil Sci Plant Nutr 53:252–258. doi:10.1111/j.1747-0765.2007.00130.x

    Article  CAS  Google Scholar 

  • Polle A (1997) Defense against photooxidative damage in plants. In: Scandalios J (ed) Oxidative Stress and the Molecular Biology of Antioxidant Defences. Cold Spring Harbor Laboratory Press, NY, pp 623–666

    Google Scholar 

  • Rejskova A, Patkova L, Stodulkova E, Lipavska H (2007) The effect of abiotic stresses on carbohydrate status of olive shoots (Olea europaea L.) under in vitro conditions. J Plant Physiol 164:174–184. doi:10.1016/j.jplph.2005.09.011

    Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. In: Agricultural Handbook, vol. 60. U.S. Department of Agriculture, Washington, pp 157–160

  • Salin ML (1988) Toxic oxygen species and protective systems of the chloroplast. Physiol Plant 72:681–689. doi:10.1111/j.1399-3054.1988.tb09182.x

    Article  CAS  Google Scholar 

  • Shimoni M (1994) A method for activity staining of peroxidase and β-1, 3-glucanase isozymes in polyacrylamide electrophoresis gels. Anal Biochem 220:36–38. doi:10.1006/abio.1994.1295

    Article  PubMed  CAS  Google Scholar 

  • Shiyab SM, Shibli RA, Mohammad MM (2003) Influence of sodium chloride salt stress on growth and nutrient acquisition of sour orange in vitro. J Plant Nutr 26:985–996. doi:10.1081/PLN-120020070

    Article  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58. doi:10.1111/j.1469-8137.1993.tb03863.x

    Article  CAS  Google Scholar 

  • Sotiropoulos T, Dimassi K (2004) Response to increasing rates of boron and NaCl on shoot proliferation and chemical composition of in vitro kiwifruit shoot cultures. Plant Cell Tissue Organ Cult 79:285–289. doi:10.1007/s11240-004-4609-1

    Article  CAS  Google Scholar 

  • Sotiropoulos TE (2007) Effect of NaCl and CaCl2 on growth and contents of minerals, chlorophyll, proline and sugars in the apple rootstock M4 cultured in vitro. Biol Plant 51:177–180. doi:10.1007/s10535-007-0035-7

    Article  CAS  Google Scholar 

  • Sotiropoulos TE, Fotopoulos S, Dimassi KN, Tsirakoglou V, Therios IN (2006) Response of the pear rootstock to boron and salinity in vitro. Biol Plant 50:779–781. doi:10.1007/s10535-006-0130-1

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Grimm B, Wobus U, Weschke W (2000) Differential response of antioxidant compounds to salinity stress in salt tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442. doi:10.1034/j.1399-3054.2000.100410.x

    Article  CAS  Google Scholar 

  • Srivastava TP, Gupta SC, Lal P, Muralia PN, Kumar A (1988) Effect of salt stress on physiological and biochemical parameters of wheat. Ann Arid Zone 27:197–204

    Google Scholar 

  • Therios IN, Misopolinos ND (1988) Genotypic responses to sodium chloride salinity of four major olive cultivars (Olea europea L.). Plant Soil 106:105–111. doi:10.1007/BF02371201

  • Wintermans JF, de Mots A (1965) Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophys Acta 109:448–453. doi:10.1016/0926-6585(65)90170-6

    Article  PubMed  CAS  Google Scholar 

  • Woodbury W, Spencer AK, Stahman MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305. doi:10.1016/0003-2697(71)90375-7

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Chatzissavvidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatzissavvidis, C., Veneti, G., Papadakis, I. et al. Effect of NaCl and CaCl2 on the antioxidant mechanism of leaves and stems of the rootstock CAB-6P (Prunus cerasus L.) under in vitro conditions. Plant Cell Tiss Organ Cult 95, 37–45 (2008). https://doi.org/10.1007/s11240-008-9411-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-008-9411-z

Keywords

Navigation