Skip to main content
Log in

Influence of 5′-azacitidine on promoting recovery of cell competence for shoot organogenesis in Arabidopsis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In Arabidopsis, adventitious shoots are formed at a high frequency when the calli are induced from roots or hypocotyls cultured on callus induction medium (CIM) and then transferred to shoot induction medium (SIM). The prolonged duration of culture on CIM decreased the frequency of shoot regeneration. However, when 5′-azacitidine (AzaC), an inhibitor of DNA methylation, was added to CIM, the excess culturing on CIM did not decrease the frequency of shoot regeneration. The level of methyl cytosine was up-regulated when hypocotyl explants were cultured on CIM for 2 weeks. We examined the expression patterns of genes that are involved in the formation or regeneration of shoots. Prolonged duration of culture on CIM up-regulated the CUC1, CLV1, CLV3, ESR1, and WUS mRNA levels, and the addition of AzaC to CIM reduced their expression levels. Our results suggest that an increase in DNA methylation decreased the shoot-forming ability and that AzaC can partially recover this ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aida M, Ishida T, Tasaka M (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126:1563–1570

    PubMed  CAS  Google Scholar 

  • Akama K, Shiraish H, Ohta S, Nakamura K, Okada K, Shimura Y (1992) Efficient transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs, plant ecotypes and Agrobacterium strains. Plant Cell Rep 12:7–11

    Article  CAS  Google Scholar 

  • Arroyo-Herrera A, Gonzalez AK, Moo RC, Quiroz-Figueroa FR, Loyola-Vargas VM, Rodriguez-Zapata LC, Dhondt CB, Suarez-Solis VM, Castano E (2008) Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell Tissue Organ Cult 94:171–180

    Article  Google Scholar 

  • Banno H, Ikeda Y, Niu QW, Chua NH (2001) Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13:2609–2618

    Article  PubMed  CAS  Google Scholar 

  • Baranek M, Krizan B, Ondrusikova E, Pidra M (2010) DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Cell Tissue Organ Cult 101:11–22

    Article  CAS  Google Scholar 

  • Burn JE, Bagnall DJ, Metzger JD, Dennis ES, Peacock WJ (1993) DNA methylation, vernalization, and the initiation of flowering. Proc Natl Acad Sci USA 90:287–291

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Pikaard CS (2005) Transcript profiling in Arabidopsis reveals complex responses to global inhibition of DNA methylation and histone deacetylation. J Biol Chem 280:796–804

    PubMed  CAS  Google Scholar 

  • Che P, Lall S, Howell SH (2007) Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226:1183–1194

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Ma Y, Chen F, Song W, Zhang L (2009) Analysis of DNA methylation patterns of PLBs derived from Cymbidium hybridium baced on MSAP. Plant Cell Tissue Organ Cult 98:67–77

    Article  CAS  Google Scholar 

  • Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585

    Article  PubMed  CAS  Google Scholar 

  • Demeulemeester MAC, Van Stallen N, De Proft MP (1999) Degree of DNA methylation in chicory (Cichorium intybus L.): influence of plant age and vernalization. Plant Sci 142:101–108

    Article  CAS  Google Scholar 

  • Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OLR, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Hicks GS (1994) Shoot induction and organogenesis in vitro: a developmental perspective. In Vitro Cell Dev Biol 30:10–15

    Article  Google Scholar 

  • Kakutani T (1997) Genetic characterization of late-flowering traits induced by DNA hypomethylation mutation in Arabidopsis thaliana. Plant J 12:1447–1451

    Article  PubMed  CAS  Google Scholar 

  • Kirch T, Simon R, Grünewald M, Werr W (2003) The DORNROSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem ccll fate and lateral organ development. Plant Cell 15:694–705

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  PubMed  CAS  Google Scholar 

  • Mayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    Article  PubMed  CAS  Google Scholar 

  • Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T (2001) Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 411:212–214

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Nakano R (1967) Chromosome complement as a determinant of the morphogenic potential of tobacco cells. Amr J Bot 54:963–970

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ozeki Y, Matsui K, Sakuta M, Matsuoka M, Ohashi Y, Kano-Murakami Y, Yamamoto N, Tanaka Y (1990) Differential regulation of phenylalanine ammonia-lyase genes during anthocyanin synthesis and by transfer effect in carrot suspension cultures. Physiol Plant 80:379–387

    Article  CAS  Google Scholar 

  • Preil M (2003) Micropropagation of ornamental plants. In: Laimer M, Rucker W (eds) Plant tissue culture 100 years since Gottlieb Haberlandt. Springer, New York, pp 115–133

    Google Scholar 

  • Ruiz-García L, Cervera MT, Martínez-Zapater JM (2005) DNA methylation increases throughout Arabidopsis development. Planta 222:301–306

    Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 54:118–130

    Google Scholar 

  • Solis-Ramos LY, Gonzalez-Estrada T, Nahuath-Dzib S, Zapata-Rodriguez LC, Castano E (2009) Overexpression of WUSCHEL in C. chinese causes ectopic morphogenesis. Plant Cell Tissue Organ Cult 96:279–287

    Article  CAS  Google Scholar 

  • Sugiyama M (1999) Organogenesis in vitro. Curr Opin Plant Biol 2:61–64

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama M, Imamura K (2006) Dose-, time-, and tissue-dependent effects of 5-bromo-2′-deoxyuridine on the in vitro organogenesis of Arabidopsis thaliana. Plant Cell Tissue Organ Cult 87:17–25

    Article  CAS  Google Scholar 

  • Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128:1127–1135

    PubMed  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    Article  PubMed  CAS  Google Scholar 

  • Valvekens D, Montagu MV, Lijsebettens MV (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540

    Article  PubMed  CAS  Google Scholar 

  • Zhao XY, Su YH, Cheng ZJ, Zhang ZS (2008) Cell fate switch during in vitro plant organogenesis. J Integr Plant Biol 50:816–824

    Article  PubMed  CAS  Google Scholar 

  • Zuo JR, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Tokuji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokuji, Y., Takano, S., Tonomura, M. et al. Influence of 5′-azacitidine on promoting recovery of cell competence for shoot organogenesis in Arabidopsis . Plant Cell Tiss Organ Cult 106, 289–297 (2011). https://doi.org/10.1007/s11240-011-9920-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-9920-z

Keywords

Navigation