Skip to main content
Log in

Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L.

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In vitro-grown cells of Sesuvium portulacastrum L., an important ‘salt accumulator’ mangrove associate, were incubated on a medium containing different levels of salt, including 0, 100, 200, or 400 mM NaCl, in order to evaluate biochemical, physiological, and growth responses. A significant decrease in callus growth, water status, and cell membrane damage was observed under salt stress. Osmotic adjustment was revealed by the accumulation of inorganic ions, such as sodium (Na+), and organic osmolytes (proline, glycine betaine, and total soluble sugars) in NaCl-treated calli compared to control. However, accretion of osmolytes and inorganic ions did not support growth of calli under NaCl stress conditions. The observed reduced growth rate in calli subjected to stress, up to 200 mM NaCl, was coupled with lower catalase and ascorbate peroxidase activities and with a significantly higher superoxide dismutase activity. These findings suggested that S. portulacastrum cell cultures exhibited higher osmotic adjustment to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad MSA, Javed F, Ashraf M (2007) Iso-osmotic effect of NaCl and PEG on growth, cations and free proline accumulation in callus tissue of two indica rice (Oryza sativa L.) genotypes. Plant Growth Regul 53:53–63

    Article  CAS  Google Scholar 

  • Amor NB, Hamid KB, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci 168:889–899

    Article  CAS  Google Scholar 

  • Arzani A (2008) Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cell Dev Biol Plant 44(5):373–383

    Article  CAS  Google Scholar 

  • Ashraf MY (2009) Salt tolerance mechanism in halophytes from Saudi Arabia and Egypt. Res J Agric Biol Sci 5(3):191–206

    Google Scholar 

  • Attipali RR, Kolluru VC, Munusamy V (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–208

    Article  CAS  Google Scholar 

  • Becana M, Moran JF, Iturbe-Ormaetxe I (1986) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147

    Article  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2003) Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tissue Organ Cult 73:101–115

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  PubMed  Google Scholar 

  • Chamandoosti F (2007) Effect of sodium chloride on establishment of callus and organogenesis in Brassica napus L. Pak J Biol Sci 10(21):3880–3884

    Article  CAS  PubMed  Google Scholar 

  • Cherian S, Reddy MP (2003) Evaluation of NaCl tolerance in the callus cultures of Suaeda nudiflora Moq. Biol Plant 46:193–198

    Article  CAS  Google Scholar 

  • Farooq S, Azam F (2006) The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. J Plant Physiol 163:629–637

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Jitesh MN, Prashant SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanism in halophytes: their role in stress defence. J Genet 85(3):237–254

    Article  Google Scholar 

  • Khayri JMA (2002) Growth, proline accumulation, and ion content in sodium chloride stressed callus of date palm. In Vitro Cell Dev Biol Plant 38:79–82

    Google Scholar 

  • Lokhande VH, Nikam TD, Patade VY, Suprasanna P (2009a) Morphological and molecular diversity analysis among the Indian clones of Sesuvium portulacastrum L. Genet Resour Crop Evol 56:705–717

    Article  CAS  Google Scholar 

  • Lokhande VH, Nikam TD, Suprasanna P (2009b) Sesuvium portulacastrum (L.) L. a promising halophyte: cultivation, utilization and distribution in India. Genet Resour Crop Evol 56:741–747

    Article  Google Scholar 

  • Maathuis FJM, Sanders D (1997) Regulation of K absorption in plant root cells by external K: interplay of different channel in maize root stellar cells. J Exp Bot 48:839–846

    Article  Google Scholar 

  • May MJ, Vernoux T, Leaver C, Van Montagu M, Inze D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–667

    Article  CAS  Google Scholar 

  • Menzel U, Leith H (1999) Annex 4: halophyte database vers. 2. In: Leith H, Moschenko M, Lohmann M, Koyro HW, Hamdy A (eds) Halophyte uses in different climates, 1. Ecological and ecophysiological studies. Progress in Biotechnology 13. Backhuys, Leiden

    Google Scholar 

  • Messedi D, Labidi N, Grignon C, Abdelly C (2004) Limits imposed by salt to the growth of the halophyte Sesuvium portulacastrum. J Plant Nutr Soil Sci 167:720–725

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salt tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Defence potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542

    Article  CAS  PubMed  Google Scholar 

  • Patade VY, Suprasanna P, Bapat VA (2008) Effects of salt stress in relation to osmotic adjustment on sugarcane (Saccharum officinarum L.) callus cultures. Plant Growth Regul 55(3):169–173

    Article  CAS  Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to longterm salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Slama I, Ghnaya T, Savoure A, Abdelly C (2008) Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. C R Biol 331:442–451

    Article  CAS  PubMed  Google Scholar 

  • Sullivan CY (1972) Mechanism of heat and drought resistance in grain sorghum and methods of measurement. In: Rao NGP, House LR (eds) Sorghum in the seventies. Oxford and IBH, New Delhi, pp 247–264

    Google Scholar 

  • Szczerba MW, Britto DT, Kronzucker HJ (2009) K+ transport in plants: physiology and molecular biology. J Plant Physiol 166:447–466

    Article  CAS  PubMed  Google Scholar 

  • Tabaei-Aghdaei S, Harrison P, Pearee RS (2000) Expression of dehydration-stress related genes in crown of wheat, grass species having contrasting acclimation to salt, cold and drought. Plant Cell Environ 23:561–571

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Google Scholar 

  • Tonon G, Kevers C, Faivre-Rampant O, Grazianil M, Gaspar T (2004) Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. J Plant Physiol 161: 701–708

    Google Scholar 

  • Vijayan K, Chakraborti SP, Ghosh PD (2003) In vitro screening of mulberry for salinity tolerance. Plant Cell Rep 22:350–357

    Article  CAS  PubMed  Google Scholar 

  • Watad AEA, Reuveni M, Bressan RA, Hasegawa PM (1991) Enhanced net K+ uptake capacity of NaCl-adapted cells. Plant Physiol 95:1265–1269

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Kojima K, Ide Y, Sasaki S (2000) Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tissue Organ Cult 63:199–206

    Article  CAS  Google Scholar 

  • Yasumoto E, Adachi K, Kato M, Sano H, Sasamoto H, Baba S, Ashihara H (1999) Uptake of inorganic ions and compatible solutes in cultured mangrove cells during salt stress. In Vitro Cell Dev Biol Plant 35:82–85

    Article  CAS  Google Scholar 

  • Yazici I, Turkan I, Sekmen AH, Demiral T (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidant system, lower level of lipid peroxidation and proline accumulation. Environ Exp Bot 61:49–57

    Article  CAS  Google Scholar 

  • Yokoi S, Bressan RA, Hasegawa PM (2002) The Japan International Centre for Agricultural Sciences (JIRCAS) Working Report No. 23. In: Iwanaga M (ed) Genetic engineering of crop plants for abiotic stress. Salt stress tolerance of plants. Japan International Centre for Agricultural Sciences, Tsukuba, pp 25–33

  • Zhang F, Yang YL, He WL, Zhao X, Zhang LX (2004) Effects of salinity on growth and compatible solutes of callus induced from Populus euphratica. In vitro Cell Dev Biol Plant 40:491–494

    Article  CAS  Google Scholar 

  • Zhao X, Tan HJ, Liu YB, Li XR, Chen GX (2009) Effect of salt stress on growth and osmotic regulation in Thellungiella and Arabisopsis callus. Plant Cell Tissue Organ Cult 98(1):97–103

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The senior author is grateful to the Department of Atomic Energy (DAE), Board for Research in Nuclear Science (BRNS) for financial support under the BARC-UOP collaborative Ph.D. research programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprasanna Penna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lokhande, V.H., Nikam, T.D. & Penna, S. Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L.. Plant Cell Tiss Organ Cult 102, 17–25 (2010). https://doi.org/10.1007/s11240-010-9699-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9699-3

Keywords

Navigation