Skip to main content
Log in

MiniMax, a new diminutive Glycine max genotype with a rapid life cycle, embryogenic potential and transformation capabilities

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

We developed Glycine max cv MiniMax (PI643148) that has a rapid life cycle, short stature and characteristic simple sequence repeat (SSR) markers that could make it useful for mutant screening, functional genomics, genetic mapping and other studies involving soybeans. We demonstrate that MiniMax is able to make somatic embryos (SEs) that rapidly develop into plantlets. Thus, the rapid cycling habit carries over into aspects of plant regeneration. Chimaeras (having transformed roots with untransformed aerial stocks) have been produced rapidly under non-axenic conditions using Agrobacterium rhizogenes-mediated transformation. Part of these experiments involved the engineering an enhanced green fluorescent protein (eGFP) reporter cassette outside the multi-cloning site of a plant expression vector, permitting non-invasive visual screening of the transformed roots. The rapid cycling growth habit of MiniMax, its ability to efficiently generate SEs and ability to be transformed should prove useful for basic aspects of G. max molecular and genetic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MG:

Maturity group

SCN:

Soybean cyst nematode

SSR:

Simple sequence repeat

GUS:

β-glucuronidase

eGFP:

Enhanced green fluorescent protein

FMV sgt:

Figwort mosaic virus sub-genomic transcript

References

  • Alkharouf NW, Klink VP, Matthews BF (2007) Identification of Heterodera glycines (soybean cyst nematode [SCN]) cDNA sequences with high identity to those of Caenorhabditis elegans having lethal mutant or RNAi phenotypes. Exp Parasitol 115:247–258

    Article  PubMed  CAS  Google Scholar 

  • Bailey MA, Boerma HR, Parrott WA (1993) Genotype effects on proliferative embryogenesis and plant regeneration of soybean. In Vitro Cell Dev B 29P:102–108

    Article  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In Planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris, Sciences de la vie/Life Sciences 316:1194–1199

    CAS  Google Scholar 

  • Bertioli DJ, Smoker M, Burrows PR (1999) Nematode-responsive activity of the cauliflower mosaic virus 35S promoter and its subdomains. Mol Plant Microbe Interact 12:189–196

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Dey N, Maiti IB (2002) Analysis of cis-sequence of subgenomic transcript promoter from the Figwort mosaic virus and comparison of promoter activity with the cauliflower mosaic virus promoters in monocot and dicot cells. Virus Res 90:47–62

    Article  PubMed  Google Scholar 

  • Byrd DW Jr, Kirkpatrick T, Barker KR (1983) An improved technique for clearing and staining plant tissue for detection of nematodes. J Nematol 15:142–143

    Google Scholar 

  • Cheon CI, Lee NG, Siddique AB et al (1993) Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J 12:4125–4135

    PubMed  CAS  Google Scholar 

  • Cho HJ, Farrand SK, Noel GR et al (2001) High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210:195–204

    Article  Google Scholar 

  • Collier R, Fuchs B, Walter N et al (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43:449–457

    Article  PubMed  CAS  Google Scholar 

  • Crane C, Wright E, Dixon RA et al (2006) Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes-transformed hairy roots. Planta 223:1344–1354

    Article  PubMed  CAS  Google Scholar 

  • Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res 4:388–396

    Article  PubMed  CAS  Google Scholar 

  • Frantz JM, Bugbee B (2004) Anaerobic conditions improve germination of a gibberellic acid deficient rice. Crop Sci 42:651–654

    Article  Google Scholar 

  • Frantz JM, Pinnock D, Klassen S et al (2004) Characterizing the environmental response of a gibberellic acid-deficient rice for use as a model crop. Agronomy J 96:1172–1181

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Haas JH, Moore LW, Ream W et al (1995) Universal PCR primers for detection of phytopathogenic Agrobacterium strains. Appl Environ Microbiol 61:2879–2884

    PubMed  CAS  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC et al (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  PubMed  CAS  Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA et al (1988) Production of transgenic soybean plants using Agrobacterium-mediated gene transfer. Bio/Technology 6:915–922

    Article  CAS  Google Scholar 

  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Klink VP, Overall CC, Alkharouf N et al (2007a) A comparative microarray analysis of an incompatible and compatible disease response by soybean (Glycine max) to soybean cyst nematode (Heterodera glycines) infection. Planta 226:1423–1447

    Article  PubMed  CAS  Google Scholar 

  • Klink VP, Overall CC, Alkharouf N et al (2007b) Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean roots infected by soybean cyst nematode (Heterodera glycines). Planta 226:1389–1409

    Article  PubMed  CAS  Google Scholar 

  • Ko T-S, Nelson RL, Korban SS (2004) Screening multiple soybean cultivars (MG 00 to MG VIII) for somatic embryogenesis following Agrobacterium-mediated transformation of immature cotyledons. Crop Sci 44:1825–1831

    Article  Google Scholar 

  • Leutwiller LS, Hough-Evans BR, Meyerowitz EM (1984) The DNA of Arabidopsis thaliana. Mol Gen Genet 194:15–23

    Article  Google Scholar 

  • Limpens E, Ramos J, Franken C et al (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55:983–992

    Article  PubMed  CAS  Google Scholar 

  • Marti E, Gisbert C, Bishop GJ et al (2006) Genetic and physiological characterization of tomato cv. Micro-Tom. J Exp Bot 57:2037–2047

    Article  PubMed  CAS  Google Scholar 

  • Matthews BF, MacDonald MH, Song Q-J et al (2007) Registration of “MiniMax” soybean. J Plant Registr 1:1–2

    Google Scholar 

  • Meissner R, Jacobson Y, Melamed S et al (1997) A new model system for tomato genetics. Plant J 12:1465–1472

    Article  CAS  Google Scholar 

  • Meissner R, Chague V, Zhu Q et al (2000) Technical advance: a high throughput system for transposon tagging and promoter trapping in tomato. Plant J 22:265–274

    Article  PubMed  CAS  Google Scholar 

  • Meurer CA, Dinkins RD, Redmond CT et al (2001) Embryogenic response of multiple soybean [Glycine max (L.) Merr.] cultivars across three locations. In Vitro Cell Dev Biol Plant 37:62–67

    Article  Google Scholar 

  • Murashige T., Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Orzaez D, Mirabel S, Wieland WH et al (2006) Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol 140:3–11

    Article  PubMed  CAS  Google Scholar 

  • Owens LD, Cress DE (1985) Genotypic variability of soybean response to Agrobacterium strains harboring the Ti or Ri plasmids. Plant Physiol 77:87–94

    PubMed  CAS  Google Scholar 

  • Parrott WA, Hoffman LM, Hildebrand DF et al (1989) Recovery of primary transformants of soybean. Plant Cell Rep 7:615–617

    CAS  Google Scholar 

  • Ranch JP, Oglesby L, Zielinski AC (1986) Plant regeneration from tissue cultures of soybean by somatic embryogenesis. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Academic Press, New York, pp 97–110

    Google Scholar 

  • Rao Arelli AP (1994) Inheritance of resistance to Heterodera glycines Race 3 in soybean accessions. Plant Dis 78:898–900

    Article  Google Scholar 

  • Santarém ER, Finer JJ (1999) Transformation of soybean (Glycine max (L.) Merrill) using proliferative embryogenic tissue maintained on semi-solid medium. In Vitro Cell Dev 35:451–455

    Google Scholar 

  • Santarem ER, Pellessier B, Finer JJ (1997) Effect of explant orientation, pH, solidifying agent and wounding on initiation ofsoybean somatic embryos. In Vitro Cell Dev B 33:13–19

    CAS  Google Scholar 

  • Savka MA, Ravillion B, Noel GR et al (1990) Induction of hariy roots on cultivated soybean genotypes and their use to propagate the soybean cyst nematode. Phytopathology 80:503–508

    Article  Google Scholar 

  • Schmidt MA, Tucker DM, Cahoon EB et al (2005) Towards normalization of soybean somatic embryo maturation. Plant Cell Rep 24:383–391

    Article  PubMed  CAS  Google Scholar 

  • Scott JW, Harbaugh BK (1989) Micro-Tom-a miniature dwarf tomato. Florida Agric Exp Stat Circ 370:1–6

    Google Scholar 

  • Sinkar VP, Pythoud F, White FF et al (1988) rolA locus of the Ri plasmid directs developmental abnormalities in transgenic tobacco plants. Genes Dev 2: 688–697

    Article  PubMed  CAS  Google Scholar 

  • Sun HJ, Uchii S, Watanabe S et al (2006) A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431

    Article  PubMed  CAS  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Article  PubMed  CAS  Google Scholar 

  • Tomlin ES, Branch SR, Chamberlain D et al (2002) Screening of soybean, Glycine max (L.) Merrill, lines for somatic embryo induction and maturation capability from immature cotyledons. In Vitro Cell Dev B 38:543–548

    Google Scholar 

  • White FF, Taylor BH, Huffman GA et al (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    PubMed  CAS  Google Scholar 

  • Zdravkovic-Korac S, Muhovski Y, Druart P et al (2004) Agrobacterium rhizogenes-mediated DNA transfer to Aesculus hippocastanum L. and the regeneration of transformed plants. Plant Cell Rep 22:698–704

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prakash Arelli, USDA-ARS-MSA, Crop Genetics and Production Research Unit, 605 Airways Blvd., Jackson, TN, 38301 for the H. glycines race studies in G. max cv MiniMax. The authors thank Hunter Beard for excellent technical support. We also thank Dr. Wayne Parrott (University of Georgia) for technical assistance during the development of the plant transformation procedures. This work was supported by the United Soybean Board under grant 5214. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent P. Klink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klink, V.P., MacDonald, M.H., Martins, V.E. et al. MiniMax, a new diminutive Glycine max genotype with a rapid life cycle, embryogenic potential and transformation capabilities. Plant Cell Tiss Organ Cult 92, 183–195 (2008). https://doi.org/10.1007/s11240-007-9323-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-007-9323-3

Keywords

Navigation