Skip to main content
Log in

Improved genetic transformation protocol for cork oak (Quercus suber L.)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

An optimized protocol for Agrobacterium tumefaciens-mediated transformation of mature Quercus suber L. embryogenic masses is reported. In this work several variables were tested. Plant genotype, explant type and time elapsed between the last subculture and inoculation, i.e. the explant preculture period, were found to be very important. Interaction between inoculum density and cocultivation period influenced the transformation efficiency as well. A transformation efficiency (i.e. percentage of the inoculated explants that yielded independent transgenic embryogenic lines) of up to 43% was obtained, greatly improving the previously described method for plant transformation of adult-selected cork oak. It was also shown that this protocol could be applied to various genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GE:

number of GUS spots per inoculated explant three weeks after the inoculation

GUS:

β-glucuronidase enzyme

GUS+ :

percentage of Kan+ lines positive for β-glucuronidase

IG:

percentage of inoculated explants showing GUS spots three weeks after the inoculation

Kan+ :

percentage of inoculated explants producing kanamycin-resistant embryos after 4 months of culture on selective medium

MSSH:

expression-proliferation medium

NptII:

neomycin phosphotransferase gene II

OD600 nm :

optical density of the bacterial cultures at 600 nm

GusA:

β-glucuronidase gene

References

  • Álvarez R, Alonso P, Cortizo M, Celestino C, Hernández I, Toribio M, Ordás RJ (2004) Genetic transformation of selected mature cork oak (Quercus suber L.) trees. Plant Cell Rep 23:218–223

    Article  PubMed  CAS  Google Scholar 

  • An G, Evert PR, Mitra A, Ha SB (1988) Binary vectors. In: Gelvin SB, Schilperoort RA, Verma D-PS (eds) Plant molecular biology manual. Kluwer Academic Publishers, Dordrecht, pp 1–19

    Google Scholar 

  • Bergmann BA, Stomp A-M (1992) Effect of host plant genotype and growth rate on Agrobacterium tumefaciens-mediated gall formation in Pinus radiata. Phytopathology 82:1457–1462

    Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  PubMed  CAS  Google Scholar 

  • Bond JE, Roose ML (1998) Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange. Plant Cell Rep 18:229–234

    Article  CAS  Google Scholar 

  • Cao X, Liu Q, Rowland LJ, Hammerschlag FA (1998) GUS expression in blueberry (Vaccinium spp.): factors influencing Agrobacterium-mediated gene transfer efficiency. Plant Cell Rep 18:266–270

    Article  CAS  Google Scholar 

  • Cervera M, Pina JA, Juarez J, Navarro L, Peña L (1998) Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep 18:271–278

    Article  CAS  Google Scholar 

  • Cheliak WM, Rogers DL (1990) Integrating biotechnology into tree improvement programs. Can J For Res 20:452–463

    Google Scholar 

  • Compton ME (1994) Statistical methods suitable for the analysis of plant tissue culture data. Plant Cell Tissue Organ Cult 37:217–242

    Google Scholar 

  • Corredoira E, Montenegro D, San-Jose MC, Vieitez AM, Ballester A (2004) Agrobacterium-mediated transformation of European chestnut embryogenic cultures. Plant Cell Rep 23:311–318

    Article  PubMed  CAS  Google Scholar 

  • Corredoira E, San-Jose MC, Ballester A, Vieitez AM (2006) Genetic transformation of Castanea sativa Mill. by Agrobacterium tumefaciens. Acta Hort (ISHS) 693:387–394

    Google Scholar 

  • Dillen W, De Clercq J, Kapila J, Zambre M, Van Montagu M, Angenon G (1997) The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J 12:1459–1463

    Article  CAS  Google Scholar 

  • Dronne S, Moja S, Jullien F, Berger F, Caissard J-C (1999) Agrobacterium-mediated transformation of lavandin (Lavandula × intermedia Emeric ex Loiseleur). Transgenic Res 8:335–347

    Article  CAS  Google Scholar 

  • Dupré P, Lacoux J, Neutelings G, Mattar-Laurain D, Fliniaux M-A, Jacquin-Dubreuil A (2000) Genetic transformation of Ginkgo biloba by Agrobacterium tumefaciens. Physiol Plant 108:403–419

    Google Scholar 

  • FAO (2004) Preliminary review of biotechnology in forestry, including genetic modification. Forest Genetic Resources Working Paper FGR/59E. Forest Resources Development Service, Forest Resources Division. Rome, Italy

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  PubMed  CAS  Google Scholar 

  • Hammerschlag FA, Zimmerman RH, Yadava U, Hunsucker S, Gercheva P (1997) Effect of antibiotics and exposure to an acidified medium on the elimination of Agrobacterium tumefaciens from apple leaf explants and on shoot regeneration. J Am Soc Hortic Sci 122:758–763

    CAS  Google Scholar 

  • Hernández I, Celestino C, Toribio M (2003) Vegetative propagation of Quercus suber L. by somatic embryogenesis. I. Factors affecting the induction in leaves from mature cork oak trees. Plant Cell Rep 21:759–764

    PubMed  Google Scholar 

  • Humara J, Marín MS, Parra F, Ordás RJ (1999) Improved efficiency of uidA gene transfer in stone pine (Pinus pinea) cotyledons using a modified binary vector. Can J For Res 29:1627–1632

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Ke J, Khan R, Johnson T, Somers DA, Das A (2001) High-efficiency gene transfer to recalcitrant plants by Agrobacterium tumefaciens. Plant Cell Rep 20:150–156

    Article  CAS  Google Scholar 

  • Ko T-S, Lee S, Krasnyanski S, Korban SS (2003) Two critical factors are required for efficient transformation of multiple soybean cultivars: Agrobacterium strain and orientation of immature cotyledonary explant. Theor Appl Genet 107:439–447

    Article  PubMed  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology (N.Y.) 9:963–967

    Article  CAS  Google Scholar 

  • Montoro P, Rattana W, Pujade-Renaud V, Michaux-Ferriere N, Monkolsook Y, Kanthapura R, Adunsadthapong S (2003) Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens: roles of calcium. Plant Cell Rep 21:1095–1102

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Niu X, Li X, Veronese P, Bressan RA, Weller SC, Hasegawa PM (2000) Factors affecting Agrobacterium tumefaciens-mediated transformation of peppermint. Plant Cell Rep 19:304–310

    Article  CAS  Google Scholar 

  • Pazour GJ, Ta CN, Das A (1992) Constitutive mutations of Agrobacterium tumefaciens transcriptional regulator virG. J Bacteriol 174:4169–4174

    PubMed  CAS  Google Scholar 

  • Peña L, Séguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19:500–506

    Article  PubMed  Google Scholar 

  • Polin LD, Liang H, Rothrock RE, Nishii M, Diehl DL, Newhouse AE, Nairn CJ, Powell WA, Maynard CA (2005) Agrobacterium-mediated transformation of American chestnut [Castanea dentata (Marsh.) Borkh.] somatic embryos. Plant Cell Tissue Organ Cult 84:69–78

    Article  CAS  Google Scholar 

  • Puigderrajols P, Fernández-Guijarro B, Toribio M, Molinas M (1996) Origin and early development of secondary embryos in Quercus suber L. Int J Plant Sci 157:674–684

    Article  Google Scholar 

  • Samanani N, Park S-U, Facchini P (2002) In vitro regeneration and genetic transformation of the berberine-producing plant, Thalictrum flavum spp. glaucum. Physiol Plant 116:79–86

    Article  PubMed  CAS  Google Scholar 

  • Schenk R, Hildebrandt A (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    CAS  Google Scholar 

  • Seabra R, Pais MS (1998) Genetic transformation of European chestnut. Plant Cell Rep 17:177–182

    Article  CAS  Google Scholar 

  • Sunilkumar G, Rathore KS (2001) Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol Breed 8:37–52. ref_end

    Article  CAS  Google Scholar 

  • Tang W, Newton RJ (2003) Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep 22:1–15

    Article  PubMed  CAS  Google Scholar 

  • Trick HN, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep 17:482–488

    Article  CAS  Google Scholar 

  • Van der Fits L, Deakin EA, Hoge JHC, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43:495–502

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. M. Toribio for kindly providing the cork oak embryogenic lines and M. Cortizo and M. González for revising the English language. R. Álvarez was supported by a FICYT research fellowship funded by “Gobierno del Principado de Asturias, Spain”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Javier Ordás.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2007_9276_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez, R., Ordás, R.J. Improved genetic transformation protocol for cork oak (Quercus suber L.). Plant Cell Tiss Organ Cult 91, 45–52 (2007). https://doi.org/10.1007/s11240-007-9276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-007-9276-6

Keywords

Navigation