Skip to main content
Log in

Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this paper, we construct a novel algorithm for solving non-smooth composite optimization problems. By using inertial technique, we propose a modified proximal gradient algorithm with outer perturbations, and under standard mild conditions, we obtain strong convergence results for finding a solution of composite optimization problem. Based on bounded perturbation resilience, we present our proposed algorithm with the superiorization method and apply it to image recovery problem. Finally, we provide the numerical experiments to show efficiency of the proposed algorithm and comparison with previously known algorithms in signal recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bauschke HH, Combettes PL (2011) Convex analysis and monotone operator theory in Hilbert spaces. Springer, New York

    Book  Google Scholar 

  2. Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer academic, Dordrecht

    Book  Google Scholar 

  3. Bach F, Jenatton R, Mairal J, Obozinski G (2012) Optimization with sparsity-inducing penalties. Found Trends Mach Learn 4(1):1–106

    Article  Google Scholar 

  4. Beck A, Teboulle M (2009) Gradient-based algorithms with applications to signal-recovery problems. In: Palomar D, Eldar Y (eds) Convex optimization in signal processing and communications. Cambridge University Press, Cambridge, pp 42–88. https://doi.org/10.1017/CBO9780511804458.003

    Chapter  Google Scholar 

  5. Figueiredo M, Nowak R (2003) An EM algorithm for wavelet-based image restoration. IEEE Trans Image Process 12(8):906–916

    Article  MathSciNet  Google Scholar 

  6. Nikazad T, Davidi R, Herman GT (2012) Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction. Inverse Probl 28(3):035005. https://doi.org/10.1088/0266-5611/28/3/035005

    Article  MathSciNet  MATH  Google Scholar 

  7. Helou ES, Zibetti MVW, Miqueles EX (2017) Superiorization of incremental optimization algorithms for statistical tomographic image reconstruction. Inverse Probl 33(4):044010. https://doi.org/10.1088/1361-6420/33/4/044010

    Article  MathSciNet  MATH  Google Scholar 

  8. Davidi R, Herman GT, Censor Y (2009) Perturbation-resilient block-iterative projection methods with application to image reconstruction from projections. Int Trans Oper Res 16(4):505–524

    Article  MathSciNet  Google Scholar 

  9. Combettes PL, Pesquet JC (2011) Proximal splitting methods in signal processing. In: Bauschke HH, Burachik RS, Combettes PL, Elser V, Russell Luke D, Wolkowicz H (eds) Fixed-point algorithms for inverse problems in science and engineering, vol 49. Springer, New York, pp 185–212

    Chapter  Google Scholar 

  10. Dunn JC (1976) Convexity, monotonicity, and gradient processes in Hilbert space. J Math Anal Appl 53(1):145–158

    Article  MathSciNet  Google Scholar 

  11. Wang C, Xiu N (2000) Convergence of the gradient projection method for generalized convex minimization. Comput Optim Appl 16(2):111–120

    Article  MathSciNet  Google Scholar 

  12. Güler O (1991) On the convergence of the proximal algorithm for convex minimization. SIAM J Control Optim 29(2):403–419

    Article  MathSciNet  Google Scholar 

  13. Parikh N, Boyd S (2014) Proximal algorithm. Found Trends Optim 1(3):123–231

    Google Scholar 

  14. Rockafellar RT (1976) Monotone operators and the proximal point algorithm. SIAM J Control Optim 14(5):877–898

    Article  MathSciNet  Google Scholar 

  15. Xu HK (2014) Properties and iterative methods for the lasso and its variants. Chin Ann Math Ser B 35(3):501–518

    Article  MathSciNet  Google Scholar 

  16. Guo Y, Cui W (2018) Strong convergence and bounded perturbation resilience of a modified proximal gradient algorithm. J Inequal Appl. https://doi.org/10.1186/s13660-018-1695-x

    Article  MathSciNet  Google Scholar 

  17. Moudafi A (2000) Viscosity approximation methods for fixed-points problems. J Math Anal Appl 241(1):46–55

    Article  MathSciNet  Google Scholar 

  18. Censor Y, Davidi R, Herman GT (2010) Perturbation resilience and superiorization of iterative algorithms. Inverse Probl 26(6):065008. https://doi.org/10.1088/0266-5611/26/6/065008

    Article  MathSciNet  MATH  Google Scholar 

  19. Davidi R, Censor Y, Schulte RW, Geneser S, Xing L (2015) Feasibility-seeking and superiorization algorithm applied to inverse treatment planning in radiation therapy. Contemp Math 636:83–92

    Article  MathSciNet  Google Scholar 

  20. Schrapp MJ, Herman GT (2014) Data fusion in X-ray computed tomography using a superiorization approach. Rev Sci Instrum 85:053701. https://doi.org/10.1063/1.4872378

    Article  Google Scholar 

  21. Xu HK (2017) Bounded perturbation resilience and superiorization techniques for the projected scaled gradient method. Inverse Probl 33(4):044008. https://doi.org/10.1088/1361-6420/33/4/044008

    Article  MathSciNet  MATH  Google Scholar 

  22. He H, Xu HK (2017) Perturbation resilience and superiorization methodology of averaged mappings. Inverse Probl 33(4):044007. https://doi.org/10.1088/1361-6420/33/4/044007

    Article  MathSciNet  MATH  Google Scholar 

  23. Censor Y, Zaslavski AJ (2013) Convergence and perturbation resilience of dynamic string-averaging projection methods. Comput Optim Appl 54(1):65–74

    Article  MathSciNet  Google Scholar 

  24. Polyak BT (1964) Some methods of speeding up the convergence of iterative methods. Ž Vyčisl Mat i Mat Fiz 4:1–17

    MathSciNet  Google Scholar 

  25. Nesterov Y (1983) A method for solving the convex programming problem with convergence rate O(1/k2). Dokl. Akad. Nauk SSSR 269:543–547

    MathSciNet  Google Scholar 

  26. Dang Y, Sun J, Xu H (2017) Inertial accelerated algorithms for solving a split feasibility problem. J Ind Manag Optim 13(3):1383–1394

    MathSciNet  MATH  Google Scholar 

  27. Dong QL, Yuan HB, Cho YJ, Rassias ThM (2016) Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim Lett 12(1):87–102

    Article  MathSciNet  Google Scholar 

  28. Suantai S, Pholasa N, Cholamjiak P (2018) The modified inertial relaxed CQ algorithm for solving the split feasibility problems. J Ind Manag Optim 14:1595–1615

    MathSciNet  MATH  Google Scholar 

  29. Cholamjiak W, Cholamjiak P, Suantai S (2018) An inertial forward–backward splitting method for solving inclusion problems in Hilbert spaces. J Fixed Point Theory Appl 20(1):42. https://doi.org/10.1007/s11784-018-0526-5

    Article  MathSciNet  MATH  Google Scholar 

  30. Kankam K, Pholasa N, Cholamjiak P (2019) On convergence and complexity of the modified forward–backward method involving new line searches for convex minimization. Math Methods Appl Sci 42(5):1352–1362

    Article  MathSciNet  Google Scholar 

  31. Suantai S, Pholasa N, Cholamjiak P (2019) Relaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problems. Rev R Acad Cienc Exactas Fís Nat Ser A Mat 113(2):1081–1099

    Article  MathSciNet  Google Scholar 

  32. Kesornprom S, Cholamjiak P (2019) Proximal type algorithms involving linesearch and inertial technique for split variational inclusion problem in Hilbert spaces with applications. Optimization 68(12):2365–2391

    Article  MathSciNet  Google Scholar 

  33. Byrne C (2004) A unified treatment of some algorithms in signal processing and image construction. Inverse Probl 20:103–120

    Article  Google Scholar 

  34. Combettes PL, Wajs VR (2005) Signal recovery by proximal forward–backward splitting. Multiscale Model Simul 4(4):1168–1200

    Article  MathSciNet  Google Scholar 

  35. Abubakar AB, Kumam P, Awwal AM (2019) Global convergence via descent modified three-term conjugate gradient projection algorithm with applications to signal recovery. Results Appl Math. https://doi.org/10.1016/j.rinam.2019.100069

    Article  Google Scholar 

  36. Abubakar AB, Kumam P, Awwal AM, Thounthong P (2019) A modified self-adaptive conjugate gradient method for solving convex constrained monotone nonlinear equations for signal recovery problems. Mathematics 7(8):693. https://doi.org/10.3390/math7080693

    Article  Google Scholar 

  37. Padcharoen A, Kumam P, Chaipunya P, Shehu Y (2020) Convergence of inertial modified Krasnoselskii–Mann iteration with application to image recovery. Thai J Math 18(1):126–142

    MathSciNet  Google Scholar 

  38. Cholamjiak P, Kankam K, Srinet P, Pholasa N (2020) A double forward–backward algorithm using linesearches for minimization problem. Thai J Math 18(1):63–76

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was completed while the first author, Nuttapol Pakkaranang, was visiting North University Center at Baia Mare, Technical University of Cluj-Napoca on 24 Feburuary–24 May, 2019. He thanks Professor Vasile Berinde for their hospitality and support by ERAMUS+ project and also thanks the Thailand Research Fund (TRF) support through the Royal Golden Jubilee Ph.D. (RGJ-PHD) Program (Grant No. PHD/0205/2561). The second author, Poom Kumam, was supported by the Thailand Research Fund and the King Mongkut’s University of Technology Thonburi (KMUTT) under the TRF Research Scholar (Grant No. RSA6080047). The fourth author, Yusuf I. Suleiman, thanks King Mongkut’s University of Technology Thonburi (KMUTT) for visiting research 6 months (October 2018–March 2019). Furthermore, this project was supported by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poom Kumam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakkaranang, N., Kumam, P., Berinde, V. et al. Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery. J Supercomput 76, 9456–9477 (2020). https://doi.org/10.1007/s11227-020-03215-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03215-z

Keywords

Mathematics Subject Classification

Navigation