Skip to main content
Log in

An inertial forward–backward splitting method for solving inclusion problems in Hilbert spaces

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this work, our interest is in investigating the monotone inclusion problems in the framework of real Hilbert spaces. For solving this problem, we propose an inertial forward–backward splitting algorithm involving an extrapolation factor. We then prove its strong convergence under some mild conditions. Finally, we provide some applications including the numerical experiments for supporting our main theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Attouch, H.: Viscosity solutions of minimization problems. SIAM J. Optim. 6, 769–806 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alvarez, F., Attouch, H.: An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alvarez, F., Cabot, A.: Asymptotic selection of viscosity equilibria of semilinear evolution equations by the introduction of a slowly vanishing term. Discrete Contin. Dyn. Syst. 15, 921–938 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Cominetti, R.: A dynamical approach to convex minimization coupling approximation with the steepest descent method. J. Differ. Equ. 128, 519–540 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Attouch, H., Czarnecki, M.-O.: Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria. J. Differ. Equ. 179, 278–310 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Attouch, H., Czarnecki, M.-O., Peypouquet, J.: Prox-penalization and splitting methods for constrained variational problems. SIAM J. Optim. 2, 149–173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Attouch, H., Czarnecki, M.-O., Peypouquet, J.: Coupling forward-backward with penalty schemes and parallel splitting for con-strained variational inequalities. SIAM J. Optim. 21, 1251–1274 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Attouch, H., Chbani, Z., Riahi, H.: Combining fast inertial dynamics for convex optimization with Tikhonov regularization. J. Math. Anal. Appl. 457, 1065–1094 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baillon, J.B., Haddad, G.: Quelques proprietes des operateurs angle-bornes et cycliquement monotones. Isr. J. Math. 26, 137–150 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York (2011)

    Book  MATH  Google Scholar 

  12. Bauschke, H.H., Combettes, P.L., Reich, S.: The asymptotic behavior of the composition of two resolvents. Nonlinear Anal. 60, 283–301 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bot, R.I., Csetnek, E.R.: Second order forward-backward dynamical systems for monotone inclusion problems. SIAM J. Control Optim. 54, 1423–1443 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houst. J. Math. 3, 459–470 (1977)

    MathSciNet  MATH  Google Scholar 

  15. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Byrne, C.: A unified treatment of some iterative algorithm in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projection in a product space. Numer. Algorithms 71, 915–932 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cominetti, R.: Coupling the proximal point algorithm with approximation methods. J. Optim. Theory Appl. 95, 581–600 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cholamjiak, P.: A generalized forward-backward splitting method for solving quasi inclusion problems in Banach spaces. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  Google Scholar 

  21. Douglas, J., Rachford, H.H.: On the numerical solution of the heat conduction problem in 2 and 3 space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dang, Y., Sun, J., Xu, H.: Inertial accelerated algorithms for solving a split feasibility problem. J. Ind. Manag. Optim. 13, 1383–1394 (2017). https://doi.org/10.3934/jimo.2016078

    MathSciNet  MATH  Google Scholar 

  23. Dong, Q.L., Yuan, H.B., Cho, Y.J., Rassias, Th.M.: Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim. Lett. 12, 17–33. https://doi.org/10.1007/s11590-016-1102-9

  24. Fiacco, A., McCormick, G.: Nonlinear programming: Sequential Unconstrained Minimization Techniques. Wiley, New York (1968)

    MATH  Google Scholar 

  25. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  26. He, S., Yang, C.: Solving the variational inequality problem defined on intersection of finite level sets. Abstr. Appl. Anal. 2013, Art ID 942315 (2013)

  27. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. López, G., Martín-Marquez, V., Wang, F., Xu, H.K.: Forward–backward splitting methods for accretive operators in Banach spaces. Abstr. Appl. Anal. 2012, Article ID 109236 (2012)

  29. Lorenz, D., Pock, T.: An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51, 311–325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Maingé, P.E.: Inertial iterative process for fixed points of certain quasi-nonexpansive mappings. Set-Valued Anal. 15, 67–79 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155, 447–454 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nesterov, Y.: A method for solving the convex programming problem with convergence rate \(O(1/k^2)\). Dokl. Akad. Nauk SSSR 269, 543–547 (1983)

    MathSciNet  Google Scholar 

  33. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Peaceman, D.H., Rachford, H.H.: The numerical solution of parabolic and elliptic differentials. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  35. Polyak, B.T.: Some methods of speeding up the convergence of iterative methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 1–17 (1964)

    MathSciNet  Google Scholar 

  36. Polyak, B.T.: Introduction to Optimization. Optimization Software, New York (1987)

    MATH  Google Scholar 

  37. Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rockafellar, R.T.: On the maximality of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    Article  MATH  Google Scholar 

  40. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  41. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control. Optim. 38, 431–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

S. Suantai would like to thank Chiang Mai University. P. Cholamjiak would like to thank University of Phayao. W. Cholamjiak would like to thank the Thailand Research Fund under the Project MRG6080105 and University of Phayao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Watcharaporn Cholamjiak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cholamjiak, W., Cholamjiak, P. & Suantai, S. An inertial forward–backward splitting method for solving inclusion problems in Hilbert spaces. J. Fixed Point Theory Appl. 20, 42 (2018). https://doi.org/10.1007/s11784-018-0526-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-018-0526-5

Mathematics Subject Classification

Keywords

Navigation