Skip to main content

Proximal Splitting Methods in Signal Processing

  • Chapter
  • First Online:
Fixed-Point Algorithms for Inverse Problems in Science and Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 49))

Abstract

The proximity operator of a convex function is a natural extension of the notion of a projection operator onto a convex set. This tool, which plays a central role in the analysis and the numerical solution of convex optimization problems, has recently been introduced in the arena of inverse problems and, especially, in signal processing, where it has become increasingly important. In this paper, we review the basic properties of proximity operators which are relevant to signal processing and present optimization methods based on these operators. These proximal splitting methods are shown to capture and extend several well-known algorithms in a unifying framework. Applications of proximal methods in signal recovery and synthesis are discussed.

AMS 2010 Subject Classification: 90C25, 65K05, 90C90, 94A08

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker, F., Prestel, M.A.: Convergence d’un schéma de minimisation alternée. Ann. Fac. Sci. Toulouse V. Sér. Math. 2, 1–9 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19 2345–2356 (2010)

    Google Scholar 

  3. Antoniadis, A., Fan, J.: Regularization of wavelet approximations. J. Amer. Statist. Assoc. 96, 939–967 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Antoniadis, A., Leporini, D., Pesquet, J.C.: Wavelet thresholding for some classes of non-Gaussian noise. Statist. Neerlandica 56, 434–453 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Attouch, H., Soueycatt, M.: Augmented Lagrangian and proximal alternating direction methods of multipliers in Hilbert spaces – applications to games, PDE’s and control. Pacific J. Optim. 5, 17–37 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Aubin, J.P.: Optima and Equilibria – An Introduction to Nonlinear Analysis, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  7. Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Computer Vision 63, 85–104 (2005)

    Google Scholar 

  8. Aujol, J.F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vision 22, 71–88 (2005)

    MathSciNet  Google Scholar 

  9. Bauschke, H.H., Borwein, J.M.: Dykstra’s alternating projection algorithm for two sets. J. Approx. Theory 79, 418–443 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Bauschke, H.H., Combettes, P.L.: A Dykstra-like algorithm for two monotone operators. Pacific J. Optim. 4, 383–391 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer (2011)

    Google Scholar 

  14. Bauschke, H.H., Combettes, P.L., Reich, S.: The asymptotic behavior of the composition of two resolvents. Nonlinear Anal. 60, 283–301 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18, 2419–2434 (2009)

    MathSciNet  Google Scholar 

  17. Bect, J., Blanc-Féraud, L., Aubert, G., Chambolle, A.: A 1 unified variational framework for image restoration. Lecture Notes in Comput. Sci. 3024, 1–13 (2004)

    Google Scholar 

  18. Benvenuto, F., Zanella, R., Zanni, L., Bertero, M.: Nonnegative least-squares image deblurring: improved gradient projection approaches. Inverse Problems 26, 18 (2010). Art. 025004

    Google Scholar 

  19. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont, MA (1997)

    Google Scholar 

  20. Bioucas-Dias, J.M., Figueiredo, M.A.T.: A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16, 2992–3004 (2007)

    MathSciNet  Google Scholar 

  21. Bouman, C., Sauer, K.: A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans. Image Process. 2, 296–310 (1993)

    Google Scholar 

  22. Boyle, J.P., Dykstra, R.L.: A method for finding projections onto the intersection of convex sets in Hilbert spaces. Lecture Notes in Statist. 37, 28–47 (1986)

    MathSciNet  Google Scholar 

  23. Bredies, K.: A forward-backward splitting algorithm for the minimization of non-smooth convex functionals in Banach space. Inverse Problems 25, 20 (2009). Art. 015005

    Google Scholar 

  24. Bredies, K., Lorenz, D.A.: Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl. 14, 813–837 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Brègman, L.M.: The method of successive projection for finding a common point of convex sets. Soviet Math. Dokl. 6, 688–692 (1965)

    MATH  Google Scholar 

  26. Brézis, H., Lions, P.L.: Produits infinis de résolvantes. Israel J. Math. 29, 329–345 (1978)

    MathSciNet  MATH  Google Scholar 

  27. Briceño-Arias, L.M., Combettes, P.L.: Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery. Numer. Math. Theory Methods Appl. 2, 485–508 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Cai, J.F., Chan, R.H., Shen, Z.: A framelet-based image inpainting algorithm. Appl. Comput. Harm. Anal. 24, 131–149 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Cai, J.F., Chan, R.H., Shen, L., Shen, Z.: Convergence analysis of tight framelet approach for missing data recovery. Adv. Comput. Math. 31, 87–113 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Cai, J.F., Chan, R.H., Shen, L., Shen, Z.: Simultaneously inpainting in image and transformed domains. Numer. Math. 112, 509–533 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms and Applications. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  32. Chaâri, L., Pesquet, J.C., Ciuciu, P., Benazza-Benyahia, A.: An iterative method for parallel MRI SENSE-based reconstruction in the wavelet domain. Med. Image Anal. 15, 185–201 (2011)

    Google Scholar 

  33. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20, 89–97 (2004)

    MathSciNet  Google Scholar 

  34. Chambolle, A.: Total variation minimization and a class of binary MRF model. Lecture Notes in Comput. Sci. 3757, 136–152 (2005)

    Google Scholar 

  35. Chambolle, A., DeVore, R.A., Lee, N.Y., Lucier, B.J.: Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7, 319–335 (1998)

    MathSciNet  MATH  Google Scholar 

  36. Chan, R.H., Setzer, S., Steidl, G.: Inpainting by flexible Haar-wavelet shrinkage. SIAM J. Imaging Sci. 1, 273–293 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Chaux, C., Combettes, P.L., Pesquet, J.C., Wajs, V.R.: A variational formulation for frame-based inverse problems. Inverse Problems 23, 1495–1518 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Chaux, C., Pesquet, J.C., Pustelnik, N.: Nested iterative algorithms for convex constrained image recovery problems. SIAM J. Imaging Sci. 2, 730–762 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Programming 64, 81–101 (1994)

    MathSciNet  MATH  Google Scholar 

  40. Chen, G.H.G., Rockafellar, R.T.: Convergence rates in forward-backward splitting. SIAM J. Optim. 7, 421–444 (1997)

    MathSciNet  MATH  Google Scholar 

  41. Cheney, W., Goldstein, A.A.: Proximity maps for convex sets. Proc. Amer. Math. Soc. 10, 448–450 (1959)

    MathSciNet  MATH  Google Scholar 

  42. Combettes, P.L.: The foundations of set theoretic estimation. Proc. IEEE 81, 182–208 (1993)

    Google Scholar 

  43. Combettes, P.L.: Inconsistent signal feasibility problems: Least-squares solutions in a product space. IEEE Trans. Signal Process. 42, 2955–2966 (1994)

    Google Scholar 

  44. Combettes, P.L.: The convex feasibility problem in image recovery. In: P. Hawkes (ed.) Advances in Imaging and Electron Physics, vol. 95, pp. 155–270. Academic, New York (1996)

    Google Scholar 

  45. Combettes, P.L.: Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections. IEEE Trans. Image Process. 6, 493–506 (1997)

    Google Scholar 

  46. Combettes, P.L.: Convexité et signal. In: Proc. Congrès de Mathématiques Appliquées et Industrielles SMAI’01, pp. 6–16. Pompadour, France (2001)

    Google Scholar 

  47. Combettes, P.L.: A block-iterative surrogate constraint splitting method for quadratic signal recovery. IEEE Trans. Signal Process. 51, 1771–1782 (2003)

    MathSciNet  Google Scholar 

  48. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)

    MathSciNet  MATH  Google Scholar 

  49. Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16, 727–748 (2009)

    MathSciNet  MATH  Google Scholar 

  50. Combettes, P.L., Bondon, P.: Hard-constrained inconsistent signal feasibility problems. IEEE Trans. Signal Process. 47, 2460–2468 (1999)

    MATH  Google Scholar 

  51. Combettes, P.L., Dinh Dũng, Vũ, B.C.: Dualization of signal recovery problems. Set-Valued Var. Anal. 18, 373–404 (2010)

    Google Scholar 

  52. Combettes, P.L., Pesquet, J.C.: A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Selected Topics Signal Process. 1, 564–574 (2007)

    Google Scholar 

  53. Combettes, P.L., Pesquet, J.C.: Proximal thresholding algorithm for minimization over orthonormal bases. SIAM J. Optim. 18, 1351–1376 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Combettes, P.L., Pesquet, J.C.: A proximal decomposition method for solving convex variational inverse problems. Inverse Problems 24, 27 (2008). Art. 065014

    Google Scholar 

  55. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    MathSciNet  MATH  Google Scholar 

  56. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57, 1413–1457 (2004)

    MathSciNet  MATH  Google Scholar 

  57. Daubechies, I., Teschke, G., Vese, L.: Iteratively solving linear inverse problems under general convex constraints. Inverse Probl. Imaging 1, 29–46 (2007)

    MathSciNet  MATH  Google Scholar 

  58. De Mol, C., Defrise, M.: A note on wavelet-based inversion algorithms. Contemp. Math. 313, 85–96 (2002)

    Google Scholar 

  59. Didas, S., Setzer, S., Steidl, G.: Combined 2 data and gradient fitting in conjunction with 1 regularization. Adv. Comput. Math. 30, 79–99 (2009)

    MathSciNet  MATH  Google Scholar 

  60. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two or three space variables. Trans. Amer. Math. Soc. 82, 421–439 (1956)

    MathSciNet  MATH  Google Scholar 

  61. Dunn, J.C.: Convexity, monotonicity, and gradient processes in Hilbert space. J. Math. Anal. Appl. 53, 145–158 (1976)

    MathSciNet  MATH  Google Scholar 

  62. Dupé, F.X., Fadili, M.J., Starck, J.L.: A proximal iteration for deconvolving Poisson noisy images using sparse representations. IEEE Trans. Image Process. 18, 310–321 (2009)

    MathSciNet  Google Scholar 

  63. Durand, S., Fadili, J., Nikolova, M.: Multiplicative noise removal using L1 fidelity on frame coefficients. J. Math. Imaging Vision 36, 201–226 (2010)

    Google Scholar 

  64. Dykstra, R.L.: An algorithm for restricted least squares regression. J. Amer. Stat. Assoc. 78, 837–842 (1983)

    MathSciNet  MATH  Google Scholar 

  65. Eckstein, J.: Parallel alternating direction multiplier decomposition of convex programs. J. Optim. Theory Appl. 80, 39–62 (1994)

    MathSciNet  MATH  Google Scholar 

  66. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Programming 55, 293–318 (1992)

    MathSciNet  MATH  Google Scholar 

  67. Eckstein, J., Svaiter, B.F.: General projective splitting methods for sums of maximal monotone operators. SIAM J. Control Optim. 48, 787–811 (2009)

    MathSciNet  MATH  Google Scholar 

  68. Eicke, B.: Iteration methods for convexly constrained ill-posed problems in Hilbert space. Numer. Funct. Anal. Optim. 13, 413–429 (1992)

    MathSciNet  MATH  Google Scholar 

  69. Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Bregman (2009). ftp://ftp.math.ucla.edu/pub/camreport/cam09-31.pdf

  70. Fadili, J., Peyré, G.: Total variation projection with first order schemes. IEEE Trans. Image Process. 20, 657–669 (2011)

    Google Scholar 

  71. Figueiredo, M.A.T., Bioucas-Dias, J.M.: Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization. In: Proc. IEEE Workshop Statist. Signal Process. Cardiff, UK (2009). http://arxiv.org/abs/0904.4872

  72. Figueiredo, M.A.T., Nowak, R.D.: An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12, 906–916 (2003)

    MathSciNet  Google Scholar 

  73. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Selected Topics Signal Process. 1, 586–597 (2007)

    Google Scholar 

  74. Fornasier, M.: Domain decomposition methods for linear inverse problems with sparsity constraints. Inverse Problems 23, 2505–2526 (2007)

    MathSciNet  MATH  Google Scholar 

  75. Fortin, M., Glowinski, R. (eds.): Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  76. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: M. Fortin, R. Glowinski (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, pp. 299–331. North-Holland, Amsterdam (1983)

    Google Scholar 

  77. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite elements approximations. Comput. Math. Appl. 2, 17–40 (1976)

    MATH  Google Scholar 

  78. Glowinski, R., Le Tallec, P. (eds.): Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    MATH  Google Scholar 

  79. Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. RAIRO Anal. Numer. 2, 41–76 (1975)

    MathSciNet  Google Scholar 

  80. Goldburg, M., Marks II, R.J.: Signal synthesis in the presence of an inconsistent set of constraints. IEEE Trans. Circuits Syst. 32, 647–663 (1985)

    MathSciNet  MATH  Google Scholar 

  81. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)

    MathSciNet  MATH  Google Scholar 

  82. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)

    MATH  Google Scholar 

  83. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 20, 403–419 (1991)

    Google Scholar 

  84. Güler, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2, 649–664 (1992)

    MathSciNet  MATH  Google Scholar 

  85. Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for l 1-minimization: methodology and convergence. SIAM J. Optim. 19, 1107–1130 (2008)

    MathSciNet  MATH  Google Scholar 

  86. Herman, G.T.: Fundamentals of Computerized Tomography – Image Reconstruction from Projections, 2nd edn. Springer, London (2009)

    Google Scholar 

  87. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, New York (2001)

    MATH  Google Scholar 

  88. Huang, Y., Ng, M.K., Wen, Y.W.: A fast total variation minimization method for image restoration. Multiscale Model. Simul. 7, 774–795 (2008)

    MathSciNet  MATH  Google Scholar 

  89. Johansson, B., Elfving, T., Kozlovc, V., Censor, Y., Forssén, P.E., Granlund, G.: The application of an oblique-projected Landweber method to a model of supervised learning. Math. Comput. Modelling 43, 892–909 (2006)

    MathSciNet  MATH  Google Scholar 

  90. Kiwiel, K.C., Łopuch, B.: Surrogate projection methods for finding fixed points of firmly nonexpansive mappings. SIAM J. Optim. 7, 1084–1102 (1997)

    MathSciNet  MATH  Google Scholar 

  91. Lemaire, B.: The proximal algorithm. In: J.P. Penot (ed.) New Methods in Optimization and Their Industrial Uses, International Series of Numerical Mathematics, vol. 87, pp. 73–87. Birkhäuser, Boston, MA (1989)

    Google Scholar 

  92. Lemaire, B.: Itération et approximation. In: Équations aux Dérivées Partielles et Applications, pp. 641–653. Gauthiers-Villars, Paris (1998)

    Google Scholar 

  93. Lent, A., Tuy, H.: An iterative method for the extrapolation of band-limited functions. J. Math. Anal. Appl. 83, 554–565 (1981)

    MathSciNet  MATH  Google Scholar 

  94. Levitin, E.S., Polyak, B.T.: Constrained minimization methods. U.S.S.R. Comput. Math. Math. Phys. 6, 1–50 (1966)

    Google Scholar 

  95. Lieutaud, J.: Approximation d’Opérateurs par des Méthodes de Décomposition. Thèse, Université de Paris (1969)

    Google Scholar 

  96. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    MathSciNet  MATH  Google Scholar 

  97. Loris, I., Bertero, M., De Mol, C., Zanella, R., Zanni, L.: Accelerating gradient projection methods for 1-constrained signal recovery by steplength selection rules. Appl. Comput. Harm. Anal. 27, 247–254 (2009)

    MATH  Google Scholar 

  98. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Française Informat. Rech. Opér. 4, 154–158 (1970)

    MathSciNet  Google Scholar 

  99. Mercier, B.: Topics in Finite Element Solution of Elliptic Problems. No. 63 in Lectures on Mathematics. Tata Institute of Fundamental Research, Bombay (1979)

    Google Scholar 

  100. Mercier, B.: Inéquations Variationnelles de la Mécanique. No. 80.01 in Publications Mathématiques d’Orsay. Université de Paris-XI, Orsay, France (1980)

    Google Scholar 

  101. Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. Paris Sér. A Math. 255, 2897–2899 (1962)

    MathSciNet  MATH  Google Scholar 

  102. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  103. Nemirovsky, A.S., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization. Wiley, New York (1983)

    MATH  Google Scholar 

  104. Nesterov, Yu.: Smooth minimization of non-smooth functions. Math. Program. 103, 127–152 (2005)

    MathSciNet  MATH  Google Scholar 

  105. Nesterov, Yu.: Gradient methods for minimizing composite objective function. CORE discussion paper 2007076, Université Catholique de Louvain, Center for Operations Research and Econometrics (2007)

    Google Scholar 

  106. Nesterov, Yu.E.: A method of solving a convex programming problem with convergence rate o(1 ∕ k 2). Soviet Math. Dokl. 27, 372–376 (1983)

    MATH  Google Scholar 

  107. Nobakht, R.A., Civanlar, M.R.: Optimal pulse shape design for digital communication systems by projections onto convex sets. IEEE Trans. Communications 43, 2874–2877 (1995)

    Google Scholar 

  108. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    MathSciNet  MATH  Google Scholar 

  109. Pesquet, J.C., Combettes, P.L.: Wavelet synthesis by alternating projections. IEEE Trans. Signal Process. 44, 728–732 (1996)

    Google Scholar 

  110. Pierra, G.: Éclatement de contraintes en parallèle pour la minimisation d’une forme quadratique. Lecture Notes in Comput. Sci. 41, 200–218 (1976)

    Google Scholar 

  111. Pierra, G.: Decomposition through formalization in a product space. Math. Programming 28, 96–115 (1984)

    MathSciNet  MATH  Google Scholar 

  112. Potter, L.C., Arun, K.S.: A dual approach to linear inverse problems with convex constraints. SIAM J. Control Optim. 31, 1080–1092 (1993)

    MathSciNet  MATH  Google Scholar 

  113. Pustelnik, N., Chaux, C., Pesquet, J.C.: Parallel proximal algorithm for image restoration using hybrid regularization. IEEE Trans. Image Process., to appear. http://arxiv.org/abs/0911.1536

  114. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  115. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    MathSciNet  MATH  Google Scholar 

  116. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    MATH  Google Scholar 

  117. Setzer, S.: Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage. Lecture Notes in Comput. Sci. 5567, 464–476 (2009)

    Google Scholar 

  118. Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image Represent. 21, 193–199 (2010)

    Google Scholar 

  119. Sibony, M.: Méthodes itératives pour les équations et inéquations aux dérivées partielles non linéaires de type monotone. Calcolo 7, 65–183 (1970)

    MathSciNet  MATH  Google Scholar 

  120. Spingarn, J.E.: Partial inverse of a monotone operator. Appl. Math. Optim. 10, 247–265 (1983)

    MathSciNet  MATH  Google Scholar 

  121. Stark, H. (ed.): Image Recovery: Theory and Application. Academic, San Diego, CA (1987)

    MATH  Google Scholar 

  122. Stark, H., Yang, Y.: Vector Space Projections : A Numerical Approach to Signal and Image Processing, Neural Nets, and Optics. Wiley, New York (1998)

    MATH  Google Scholar 

  123. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas-Rachford splitting methods. J. Math. Imaging Vision 36, 168–184 (2010)

    MathSciNet  Google Scholar 

  124. Thompson, A.M., Kay, J.: On some Bayesian choices of regularization parameter in image restoration. Inverse Problems 9, 749–761 (1993)

    MathSciNet  MATH  Google Scholar 

  125. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  126. Titterington, D.M.: General structure of regularization procedures in image reconstruction. Astronom. and Astrophys. 144, 381–387 (1985)

    MathSciNet  Google Scholar 

  127. Tropp, J.A.: Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 52, 1030–1051 (2006)

    MathSciNet  Google Scholar 

  128. Trussell, H.J., Civanlar, M.R.: The feasible solution in signal restoration. IEEE Trans. Acoust., Speech, Signal Process. 32, 201–212 (1984)

    Google Scholar 

  129. Trussell, H.J., Civanlar, M.R.: The Landweber iteration and projection onto convex sets. IEEE Trans. Acoust., Speech, Signal Process. 33, 1632–1634 (1985)

    Google Scholar 

  130. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29, 119–138 (1991)

    MathSciNet  MATH  Google Scholar 

  131. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization (2008). http://www.math.washington.edu/~tseng/papers/apgm.pdf

  132. Varga, R.S.: Matrix Iterative Analysis, 2nd edn. Springer, New York (2000)

    MATH  Google Scholar 

  133. Vese, L.A., Osher, S.J.: Image denoising and decomposition with total variation minimization and oscillatory functions. J. Math. Imaging Vision 20, 7–18 (2004)

    MathSciNet  Google Scholar 

  134. Vonesh, C., Unser, M.: A fast thresholded Landweber algorithm for wavelet-regularized multidimensional deconvolution. IEEE Trans. Image Process. 17, 539–549 (2008)

    MathSciNet  Google Scholar 

  135. Vonesh, C., Unser, M.: A fast multilevel algorithm for wavelet-regularized image restoration. IEEE Trans. Image Process. 18, 509–523 (2009)

    MathSciNet  Google Scholar 

  136. Weiss, P., Aubert, G., Blanc-Féraud, L.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31, 2047–2080 (2009)

    MathSciNet  MATH  Google Scholar 

  137. Yamada, I., Ogura, N., Yamashita, Y., Sakaniwa, K.: Quadratic optimization of fixed points of nonexpansive mappings in Hilbert space. Numer. Funct. Anal. Optim. 19, 165–190 (1998)

    MathSciNet  MATH  Google Scholar 

  138. Youla, D.C.: Generalized image restoration by the method of alternating orthogonal projections. IEEE Trans. Circuits Syst. 25, 694–702 (1978)

    MathSciNet  MATH  Google Scholar 

  139. Youla, D.C.: Mathematical theory of image restoration by the method of convex projections. In: H. Stark (ed.) Image Recovery: Theory and Application, pp. 29–77. Academic, San Diego, CA (1987)

    Google Scholar 

  140. Youla, D.C., Velasco, V.: Extensions of a result on the synthesis of signals in the presence of inconsistent constraints. IEEE Trans. Circuits Syst. 33, 465–468 (1986)

    MathSciNet  MATH  Google Scholar 

  141. Youla, D.C., Webb, H.: Image restoration by the method of convex projections: Part 1 – theory. IEEE Trans. Medical Imaging 1, 81–94 (1982)

    Google Scholar 

  142. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. I–V. Springer, New York (1985–1990)

    Google Scholar 

  143. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction (2009). SIAM J. Imaging Sci. 3, 253–276 (2010)

    MathSciNet  MATH  Google Scholar 

  144. Zhu, C.Y.: Asymptotic convergence analysis of the forward-backward splitting algorithm. Math. Oper. Res. 20, 449–464 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agence Nationale de la Recherche under grants ANR-08-BLAN-0294-02 and ANR-09-EMER-004-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick L. Combettes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Combettes, P.L., Pesquet, JC. (2011). Proximal Splitting Methods in Signal Processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications(), vol 49. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9569-8_10

Download citation

Publish with us

Policies and ethics