Skip to main content
Log in

Interaction of volatile organic compounds (VOCs) emitted from banana on stanene nanosheet—a first-principles studies

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Using ab initio calculation, structural stability, including electronic properties of bare/hydrogenated stanene (BSn/HSn) nanosheet, was explored. The geometrical stability of HSn material is verified with the influence of phonon band structure and formation energy. The concentration of the present work is to check the quality of Musa acuminata (banana) fruits when it is in ripe and overripe stage using HSn nanosheet material. Further, the interaction of different volatile organic compounds, namely, isoamyl acetate, isobutyl acetate, acetoin, and 2,3-butanediol aromas on HSn base material is studied with the significant parameter such as Bader charge transfer, band gap, adsorption energy, and average energy band gap changes. The sensitivity of the aromas emitting from ripe and overripe stages of banana on HSn nanosheet was studied using density of states spectrum. The adsorption energy of HSn nanosheet is found in the range of − 0.055 to − 0.989 eV upon the interaction VOCs of Musa acuminata. The novel aspect of the present work is to check the quality of Musa acuminata with the influence of HSn nanosheet using density functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tewksbury JJ (2002). New Phytol 156:137

    Article  PubMed  Google Scholar 

  2. Cipollini ML, Levey DJ (1997). Am Nat 150:346

    Article  CAS  PubMed  Google Scholar 

  3. Rodriguez A, Alquezar B, Pena L (2013). New Phytol 197:36

    Article  CAS  PubMed  Google Scholar 

  4. Valburg LK (1992). Oikos 65:25

    Article  Google Scholar 

  5. Buchholz R, Levey DJ (1990). Oikos 59:200

    Article  Google Scholar 

  6. Dominy NJ (2004). Integr Comp Biol 44:295

    Article  PubMed  Google Scholar 

  7. Dudley R (2000). Q Rev Biol 75:3

    Article  CAS  PubMed  Google Scholar 

  8. Aurore G, Ginies C, Ganou-Parfait B, Renard C, Fahrasmane L (2011). Food Chem 129:28

    Article  CAS  Google Scholar 

  9. Brat P, Yahia A, Chillet M, Bugaud C, Bakry F, Reynes M, Brillouet J-M (2004). Fruits 59:75

    Article  CAS  Google Scholar 

  10. Arias P, Dankers C, Liu P, Pilkauskas P (2003) The world banana economy 1985–2002. Food and Agriculture Organization of the United Nations, Rome 94 pp

    Google Scholar 

  11. Cao S, Low J, Yu J, Jaroniec M (2015). Adv Mater 27:2150

    Article  CAS  PubMed  Google Scholar 

  12. Cai Y, Zhang G, Zhang Y-W (2014). Sci Rep 4:6677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu H, Du Y, Deng Y, Peide DY (2015). Chem Soc Rev 44:2732

    Article  CAS  PubMed  Google Scholar 

  14. Amorim RG, Scheicher RH (2015). Nanotechnology 26:154002

    Article  CAS  PubMed  Google Scholar 

  15. de Souza FAL, Amorim RG, Scopel WL, Scheicher RH (2017). Nano 9:2207

    Google Scholar 

  16. Nagarajan V, Chandiramouli R (2017). J Mol Graph Model 75:365

    Article  CAS  PubMed  Google Scholar 

  17. Kou L, Chen C, Smith SC (2015). J Phys Chem 6:2794

    CAS  Google Scholar 

  18. Zhou Q, Huang Y, Tan C, Chen X (2016) 17th International Conference on Electronic Packaging Technology (ICEPT). https://doi.org/10.1109/ICEPT.2016.7583242

  19. Chandiramouli R (2017). J Mol Liq 242:571

    Article  CAS  Google Scholar 

  20. Bhuvaneswari R, Nagarajan V, Chandiramouli R (2018). Chem Phys 501:78

    Article  CAS  Google Scholar 

  21. Wang J, Xu Y, Zhang S-C (2014). Phys Rev B 90:054503

    Article  CAS  Google Scholar 

  22. Wu S-C, Shan G, Yan B (2014). Phys Rev Lett 113:256401

    Article  CAS  PubMed  Google Scholar 

  23. Zhu F-F, Chen W-J, Xu Y, Gao C-L, Guan D-D, Liu C-H, Qian D, Zhang S-C, Jia J-F (2015). Nat Mater 14:1020

    Article  CAS  PubMed  Google Scholar 

  24. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Portal DS (2002). J Phys Condens Matter 14:2745

    Article  CAS  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  26. Nagarajan V, Srimathi U, Chandiramouli R (2018). Comput Theor Chem 1123:119

    Article  CAS  Google Scholar 

  27. Chen X, Tan C, Yang Q, Meng R, Liang Q, Cai M et al (2016). J Phys Chem C 120:13987

    Article  CAS  Google Scholar 

  28. Grimme S (2011). Comput Mol Sci 1:211

    Article  CAS  Google Scholar 

  29. Troullier N, Martins J (1990). Solid State Commun 74:613

    Article  Google Scholar 

  30. Bhuvaneswari R, Nagarajan V, Chandiramouli R (2018). Chem Phys Lett 691:37

    Article  CAS  Google Scholar 

  31. Nagarajan V, Chandiramouli R (2018). IEEE Sensors J 18:948

    Article  Google Scholar 

  32. Nagarajan V, Bhattacharyya A, Chandiramouli R (2018). J Mol Graph Model 79:149–156

    Article  CAS  PubMed  Google Scholar 

  33. Monkhorst HJ, Pack JD (1976). Phys Rev B 13:5118

    Article  Google Scholar 

  34. Bader R (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  35. Chandiramouli R (2017). Appl Surf Sci 426:1221

    Article  CAS  Google Scholar 

  36. Vessally E, Behmagham F, Massuomi B, Hosseinian A, Nejati K (2017). J Mol Model 23:138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peyghan AA, Noei M, Bagheri Z (2014). J Mol Model 20:2539

    Article  CAS  PubMed  Google Scholar 

  38. Nagarajan V, Chandiramouli R (2017). Superlattice Microst 107:118

    Article  CAS  Google Scholar 

  39. Nagarajan V, Chandiramouli R (2017). Appl Surf Sci 419:9

    Article  CAS  Google Scholar 

  40. Modarresi M, Kakoee A, Mogulkoc Y, Roknabadi MR (2015). Comput Mater Sci 101:164

    Article  CAS  Google Scholar 

  41. Balendhran S, Walia S, Nili H, Sriram S (2014). Small 11:40–652

    Google Scholar 

  42. Nagarajan V, Chandiramouli R (2017). Chem Phys 495:35

    Article  CAS  Google Scholar 

  43. Lu P, Wu L, Yang C, Liang D, Quhe R, Guan P, Wang S (2017). Sci Rep 7:3912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nagarajan V, Thayumanavan A, Chandiramouli R (2018). J Inorg Organomet Polym 28:121

    Article  CAS  Google Scholar 

  45. Ullah H, Shah A-u-H A, Bilal S, Ayub K (2013). J Phys Chem C 117:23701

    Article  CAS  Google Scholar 

  46. Shaidu Y, Akin-Ojo O (2016). Comput Mater Sci 118:11–15

    Article  CAS  Google Scholar 

  47. Kaloni TP (2014). J Phys Chem C 118:25200

    Article  CAS  Google Scholar 

  48. Bartolomei M, Carmona-Novillo E, Giorgi G (2015). Carbon 95:1076

    Article  CAS  Google Scholar 

  49. Rad AS, Ayub K (2017). Solid State Sci 69:22

    Article  CAS  Google Scholar 

  50. TNO (1996) Banana (Musa sapientum L.). In: Maarse H. (ed) Volatile compounds in food. Qualitative and quantitative data. TNO Nutrition and Food Research Institute AJ, Zeist, pp 3.1–3.5

  51. Nagarajan V, Chandiramouli R (2017). Appl Surf Sci 413:109

    Article  CAS  Google Scholar 

  52. Beheshtian J, Peyghan AA, Bagheri Z (2013). Struct Chem 24:1565

    Article  CAS  Google Scholar 

  53. Peyghan AA, Noei M (2013). J Mol Model 19:3941

    Article  CAS  PubMed  Google Scholar 

  54. Nagarajan V, Chandiramouli R (2018). Mater Sci Eng B 229:193

    Article  CAS  Google Scholar 

  55. Beheshtian J, Kamfiroozi M, Bagheri Z, Peyghan AA (2011). Phys E 44:546

    Article  CAS  Google Scholar 

Download references

Funding

The authors wish to express their sincere thanks to the Nano Mission Council (no. SR/NM/NS-1011/2017(G)) Department of Science & Technology, India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandiramouli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 667kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, V., Chandiramouli, R. Interaction of volatile organic compounds (VOCs) emitted from banana on stanene nanosheet—a first-principles studies. Struct Chem 29, 1321–1332 (2018). https://doi.org/10.1007/s11224-018-1114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1114-4

Keywords

Navigation