Skip to main content
Log in

Fluorination of BC3 nanotubes: DFT studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have studied the adsorption of atomic and molecular fluorines on a BC3 nanotube by using density functional calculations. It was found that the adsorption of atomic fluorine on a C atom of the tube surface is energetically more favorable than that on a B atom by about 0.97 eV. The adsorption of atomic fluorine on both C and B atoms significantly affects the electronic properties of the BC3 tube. The HOMO-LUMO energy gap is considerably reduced from 2.37 to 1.50 and 1.14 eV upon atomic F adsorption on B and C atoms, respectively. Molecular fluorine energetically tends to be dissociated on B atoms of the tube surface. The associative and dissociative adsorption energies of F2 were calculated to be about −0.42 and −4.79 eV, respectively. Electron emission density from BC3 nanotube surface will be increased upon both atomic and molecular fluorine adsorptions due to work function decrement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Beheshtian J, Peyghan AA, Bagheri Z (2012) J Mol Model 19:391–396

    Article  Google Scholar 

  3. Beheshtian J, Peyghan AA, Bagheri Z (2012) Monatsh Chem/Chem Mon 143:1623–1626

    Article  CAS  Google Scholar 

  4. Politzer P, Lane P, Murray JS, Concha MC (2005) J Mol Model 11:1–7

    Article  CAS  Google Scholar 

  5. Politzer P, Murray JS, Lane P, Concha MC, Jin P, Peralta-Inga Z (2005) J Mol Model 11:258–264

    Article  CAS  Google Scholar 

  6. Salazar-Salinas K, Kubli-Garfias C, Seminario JM (2012) J Mol Model. doi:10.1007/s00894-012-1638-2

    Google Scholar 

  7. Tondare V, Balasubramanian C, Shende S, Joag D, Godbole V, Bhoraskar S, Bhadhade M (2002) Appl Phys Lett 80:4813–4815

    Article  CAS  Google Scholar 

  8. Taguchi T, Igawa N, Yamamoto H, Shamoto S, Jitsukawa S (2005) Physica E 28:431–438

    Article  CAS  Google Scholar 

  9. Su WS, Chang CP, Lin MF, Li TL (2011) J Appl Phys 110:014312–014318

    Article  Google Scholar 

  10. Ying LX, Yang WC, Jian TY, Guo SW, Dong WW (2010) Chin Phys B 19:036103–036110

    Article  Google Scholar 

  11. Rossato J, Baierle RJ, Orellana W (2007) Phys Rev B 75:235401–235407

    Article  Google Scholar 

  12. Salzmann CG, Llewellyn SA, Tobias G, Ward MAH, Huh Y, Green MLH (2007) Adv Mater 19:883–887

    Article  CAS  Google Scholar 

  13. Zhao J, Lu JP, Han J, Yang CK (2003) Appl Phys Lett 82:3746–3748

    Article  CAS  Google Scholar 

  14. Banerjee S, Hemraj-Benny T, Wong SS (2005) Adv Mater 17:17–29

    Article  CAS  Google Scholar 

  15. Bahr JL, Tour JM (2002) J Mater Chem 12:1952–1958

    Article  CAS  Google Scholar 

  16. Mickelson ET, Huffman CB, Rinzler AG, Smalley RE, Hauge RH, Margrave JL (1998) Chem Phys Lett 296:188–194

    Article  CAS  Google Scholar 

  17. Peng H, Gu Z, Yang J, Zimmerman JL, Willis PA, Bronikowski MJ, Smalley RE, Hauge RH, Margrave JL (2001) Nano Lett 1:625–629

    Article  CAS  Google Scholar 

  18. Zhi C, Bando Y, Tang C, Xie R, Sekiguchi T, Golberg D (2005) J Am Chem Soc 127:15996–15997

    Article  CAS  Google Scholar 

  19. Xiang HJ, Yang JL, Hou JG, Zhu QS (2005) Appl Phys Lett 87:243113–243115

    Article  Google Scholar 

  20. Wang X, Liew KM (2012) J Phys Chem C 116:1702–1708

    Article  CAS  Google Scholar 

  21. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  22. Gan LH, Zhao JQ (2009) Physica E 41:1249–1252

    Article  CAS  Google Scholar 

  23. Peyghan AA, Hadipour NL, Bagheri Z (2013) J Phys Chem C 117:2427–2432

    Article  Google Scholar 

  24. Baei MT, Peyghan AA, Bagheri Z (2012) Chin J Chem Phys 25:671–675

    Article  CAS  Google Scholar 

  25. Abdulsattar MA (2011) Superlattice Microst 50:377–385

    Article  CAS  Google Scholar 

  26. Beheshtian J, Kamfiroozi M, Bagheri Z, Peyghan AA (2012) Chin J Chem Phys 25:60–64

    Article  CAS  Google Scholar 

  27. Marlid B, Larsson K, Carlsson JO (1999) J Phys Chem B 103:7637–7642

    Article  Google Scholar 

  28. Foresman JB, Frisch AE (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc., Pittsburgh

    Google Scholar 

  29. Lewars E (2003) Computational chemistry-introduction to the theory and applications of molecular and quantum mechanics. Kluwer, Norwell

    Google Scholar 

  30. Niu JJ, Wang JN, Xu NS (2008) Solid State Sci 10:618–621

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziar Noei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyghan, A.A., Noei, M. Fluorination of BC3 nanotubes: DFT studies. J Mol Model 19, 3941–3946 (2013). https://doi.org/10.1007/s00894-013-1935-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1935-4

Keywords

Navigation