Skip to main content
Log in

Redox interactions between structurally different alkylresorcinols and iron(III) in aqueous media: frozen-solution 57Fe Mössbauer spectroscopic studies, redox kinetics and quantum chemical evaluation of the alkylresorcinol reactivities

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Iron(III)-containing aqueous solutions of 5-methylresorcinol (5-MR), 5-n-propylresorcinol (5-n-PR) and 4-n-hexylresorcinol (4-n-HR) at pH ~ 3 were studied by means of 57Fe transmission Mössbauer spectroscopy. Kinetic considerations were applied to the redox reactions. Density Functional Theory (DFT) calculations were performed for the alkylresorcinol (AR) molecules and their non-alkylated analogue (resorcinol). Mössbauer spectra consisted of quadrupole doublets assigned to high-spin Fe(III) and Fe(II) species. From changes in their relative spectral areas, a gradual reduction of Fe(III) by all the ARs studied was observed. However, significant differences were found for the reduction rates among the ARs. The following series of the reduction rates was established by means of Mössbauer spectroscopy: 4-n-HR ≫ 5-MR > 5-n-PR, supplemented by rate constants calculated using a kinetic model. DFT calculations resulted in the following series: 4-n-HR ≫ 5-n-PR > 5-MR ≫ resorcinol (the latter is not oxidised under the conditions applied). The reversed order of the experimentally observed 5-MR and 5-n-PR oxidation rates may be explained in terms of their different kinetic parameters related to their structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stevens AM, Schuster M, Rumbaugh KP (2012) Working together for the common good: cell–cell communication in bacteria. J Bacteriol 194:2131–2141

    Article  CAS  Google Scholar 

  2. Stacy AR, Diggle SP, Whileley M (2012) Rules of engagement: defining bacterial communication. Curr Opin Microbiol 15:155–161

    Article  Google Scholar 

  3. Mangwani N, Dash HR, Chauhan A, Das S (2012) Bacterial quorum sensing: functional features and potential applications in biotechnology. J Mol Microbiol Biotechnol 22:215–227

    Article  CAS  Google Scholar 

  4. Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft J-U (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239

    Article  CAS  Google Scholar 

  5. Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Cámara M, Smith H, Williams P (2002) N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70:5635–5646

    Article  CAS  Google Scholar 

  6. Kamnev AA (2008) Chapter 13: Metals in soil versus plant–microbe interactions: biotic and chemical interferences. In: Barka EA, Clement C (eds) Plant–microbe interactions. Research Signpost, Trivandrum, pp 291–318

    Google Scholar 

  7. Pracht J, Boenigk J, Isenbeck-Schröter M, Keppler F, Schöler HF (2001) Abiotic Fe(III) induced mineralization of phenolic substances. Chemosphere 44:613–619

    Article  CAS  Google Scholar 

  8. Kamnev AA, Kuzmann E (1997) Mössbauer spectroscopic evidence for the reduction of iron(III) by anthranilic acid in aqueous solution. Polyhedron 16:3353–3356

    Article  CAS  Google Scholar 

  9. Kamnev AA, Kuzmann E (1997) Mössbauer spectroscopic study of the interaction of indole-3-acetic acid with iron(III) in aqueous solution. Biochem Mol Biol Int 41:575–581

    CAS  Google Scholar 

  10. Kovács K, Kamnev AA, Mink J, Németh Cs, Kuzmann E, Megyes T, Grósz T, Medzihradszky-Schweiger H, Vértes A (2006) Mössbauer, vibrational spectroscopic and solution X-ray diffraction studies of the structure of iron(III) complexes formed with indole-3-alkanoic acids in acidic aqueous solutions. Struct Chem 17:105–120

    Article  Google Scholar 

  11. Kovács K, Sharma VK, Kamnev AA, Kuzmann E, Homonnay Z, Vértes A (2008) Water and time dependent interaction of iron(III) with indole-3-acetic acid. Struct Chem 19:109–114

    Article  Google Scholar 

  12. Kamnev AA, Kovács K, Kuzmann E, Vértes A (2009) Application of Mössbauer spectroscopy for studying chemical effects of environmental factors on microbial signalling: redox processes involving iron(III) and some microbial autoinducer molecules. J Mol Struct 924–926:131–137

    Article  Google Scholar 

  13. Von Uexkull HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  14. Johnson DB, Kanao T, Hedrich S (2012) Redox transformations of iron at extremely low pH: fundamental and applied aspects. Front Microbiol 3:96. doi:10.3389/fmicb.2012.00096

    Article  Google Scholar 

  15. Bolan NS, Hedley MJ, White RE (1991) Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant Soil 134:53–63

    Article  CAS  Google Scholar 

  16. Uroz S, Calvaruso C, Turpault R-P, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17(8):378–387

    Article  CAS  Google Scholar 

  17. Chapman PJ, Ribbons DW (1976) Metabolism of resorcinylic compounds by bacteria: orcinol pathway in Pseudomonas putida. J Bacteriol 125:975–984

    CAS  Google Scholar 

  18. Kozubek A, Tyman JHP (1999) Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem Rev 99:1–25

    Article  CAS  Google Scholar 

  19. Stasiuk M, Kozubek A (2010) Biological activity of phenolic lipids. Cell Mol Life Sci 67:841–860

    Article  CAS  Google Scholar 

  20. Sampietro DA, Belizán MME, Apud GR, Juarez JH, Vattuone MA, Catalán CAN (2013) Chapter 10: Alkylresorcinols: chemical properties, methods of analysis and potential uses in food, industry and plant protection. In: Céspedes CL, Sampietro DA, Seigler DS, Rai M (eds) Natural antioxidants and biocides from wild medicinal plants. CAB International, Wallingford, pp 148–166

    Chapter  Google Scholar 

  21. Mulyukin AL, Filippova SN, Kozlova AN, Surgucheva NA, Bogdanova TI, Tsaplina IA, El’-Registan GI (2006) Non-species-specific effects of unacylated homoserine lactone and hexylresorcinol, low molecular weight autoregulators, on the growth and development of bacteria. Microbiology (Mosc) (Engl Transl) 75:405–414

    Article  CAS  Google Scholar 

  22. Nikolaev YuA, Mulyukin AL, Stepanenko IYu, El’-Registan GI (2006) Autoregulation of stress response in microorganisms. Microbiology (Mosc) (Engl Transl) 75:420–426

    Article  CAS  Google Scholar 

  23. El’-Registan GI, Mulyukin AL, Nikolaev YuA, Suzina NE, Gal’chenko VF, Duda VI (2006) Adaptogenic functions of extracellular autoregulators of microorganisms. Microbiology (Moscow) (Engl Transl) 75:380–389

    Article  Google Scholar 

  24. Revina AA, Larionov OG, Kochetova MV, Lutsik TK, El’-Registan GI (2003) Spectrophotometric and chromatographic study of radiolysis products of aerated aqueous solutions of alkylresorcinols. Russ Chem Bull 52:2386–2392

    Article  CAS  Google Scholar 

  25. Vértes A, Nagy D (eds) (1990) Mössbauer spectroscopy of frozen solutions. Akad. Kiadó, Budapest. Russian edition (Perfiliev YuD, translation editor). Mir, Moscow (1998)

  26. Krebs C, Price JC, Baldwin J, Saleh L, Green MT, Bollinger JM Jr (2005) Rapid freeze-quench 57Fe Mössbauer spectroscopy: monitoring changes of an iron-containing active site during a biochemical reaction. Inorg Chem 44:742–757

    Article  CAS  Google Scholar 

  27. Krebs C, Bollinger JM Jr (2009) Freeze-quench 57Fe Mössbauer spectroscopy: trapping reactive intermediates. Photosynth Res 102:295–304

    Article  CAS  Google Scholar 

  28. Lam SW, Chiang K, Lim TM, Amal R, Low GK-C (2005) The role of ferric ion in the photochemical and photocatalytic oxidation of resorcinol. J Catal 234:292–299

    Article  CAS  Google Scholar 

  29. Klencsár Z, Kuzmann E, Vértes A (1996) User-friendly software for Mössbauer spectrum analysis. J Radioanal Nucl Chem Articles 210:105–118

    Article  Google Scholar 

  30. Kohn W (1999) Nobel Lecture: electronic structure of matter—wave functions and density functionals. Rev Mod Phys 71:1253–1266

    Article  CAS  Google Scholar 

  31. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley-VCH, Toronto

    Book  Google Scholar 

  32. Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density functionals. J Phys Chem A 111:10439–10452. doi:10.1021/jp0734474

    Article  CAS  Google Scholar 

  33. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  34. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  36. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  37. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millan JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malich DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzales C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andreas JL, Head-Gordon M, Reploge ES, Pople JA (2003) Gaussian 03, revision B.03. Gaussian, Inc., Pittsburgh

    Google Scholar 

  39. Pankratov AN (2007) Electronic structure and reactivity of inorganic, organic, organoelement and coordination compounds: an experience in the area of applied quantum chemistry. In: Kaisas MP (ed) Quantum chemistry research trends. Nova Science Publishers, Inc., New York, pp 57–125

    Google Scholar 

  40. Froimowitz M (1993) HyperChem: a software package for computational chemistry and molecular modeling. Biotechniques 14:1010–1013

    CAS  Google Scholar 

  41. Stewart JJP (1989) Optimization of parameters for semiempirical methods. I. Method. J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  42. Stewart JJP (1989) Optimization of parameters for semiempirical methods. II. Applications. J Comput Chem 10:221–264

    Article  CAS  Google Scholar 

  43. Gütlich P, Bill E, Trautwein A (2011) Mössbauer spectroscopy and transition metal chemistry. Springer, Berlin

    Book  Google Scholar 

  44. Kuzmann E, Homonnay Z, Nagy S, Nomura K (2010) Mössbauer spectroscopy. In: Vértes A, Nagy S, Klencsár Z (eds) Handbook of nuclear chemistry, vol 2., Elements and isotopes: formation, transformation, distribution. Springer, Dordrecht, pp 3–65

    Google Scholar 

  45. Singh US, Scannell RT, An H, Carter BJ, Hecht SM (1995) DNA cleavage by di- and trihydroxyalkylbenzenes. Characterization of products and the roles of O2, Cu(II), and alkali. J Am Chem Soc 117:12691–12699

    Article  CAS  Google Scholar 

  46. Dykstra CE, Frenking G, Kim KS, Scuseria GE (2011) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam, 1308 pp

    Google Scholar 

  47. Gurvich LV, Karachevtsev GV, Kondratyev VN, Lebedev YuA, Medvedev VA, Potapov VK, Khodeev YuS (1974) Energii razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k elektronu („Energies of disruption of chemical bonds. Ionisation potentials and affinity to the electron“, in Russ.). Nauka, Moscow, 351 pp

    Google Scholar 

  48. Canevari TC, Arenas LT, Landers R, Custodio R, Gushikem Y (2013) Simultaneous electroanalytical determination of hydroquinone and catechol in the presence of resorcinol at an SiO2/C electrode spin-coated with a thin film of Nb2O5. Analyst 138:315–324

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part under the Agreement on Scientific Cooperation between the Russian and Hungarian Academies of Sciences for 2011–2013 (Project 28), as well as under the European Research Area (ERA) Chemistry Programme (Project MCI-EUI 2009-04156; OTKA NN-84307).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Kamnev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamnev, A.A., Dykman, R.L., Kovács, K. et al. Redox interactions between structurally different alkylresorcinols and iron(III) in aqueous media: frozen-solution 57Fe Mössbauer spectroscopic studies, redox kinetics and quantum chemical evaluation of the alkylresorcinol reactivities. Struct Chem 25, 649–657 (2014). https://doi.org/10.1007/s11224-013-0367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0367-1

Keywords

Navigation